Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus of zoonotic origin that can bind to ACE2 receptors on the cells of many wild and domestic mammals. Studies have shown that the virus can circulate among animals mutate, lead to animal-to-human zoonotic jump, and further onward spread between humans. Infection in pets is unusual, and there are few human-to-pet transmission reports worldwide.

Objective: To describe the SARS-CoV-2 infection in a domestic animal in Córdoba, Colombian Caribbean region.

Methods: A cross-sectional molecular surveillance study was carried out, oral and rectal swabs were taken from cats and dogs living with people diagnosed with coronavirus disease 2019 (COVID-19).

Results: SARS-CoV-2 was found in a cat living with a person with COVID-19. Genome sequencing showed that the B.1.111 lineage caused the infection in the cat. The owner's sample could not be sequenced. The lineage is predominant in Colombia, and this variant is characterised by the presence of the D614D and Q57H mutation.

Conclusion: The present work is the first report of an infected cat with SARS-CoV-2 with whole-genome sequencing in Colombia. It highlights the importance of detecting SARS-CoV-2 mutations that could promote the transmissibility of this new coronavirus. There is still a significant information gap on human-to-cat-to-human infection; we encourage self-isolation measures between COVID-19 patients and companion animals. The findings of this study give a preliminary view of the current panorama of SARS-CoV-2 infection in animals in Colombia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088422PMC
http://dx.doi.org/10.1590/0074-02760210375DOI Listing

Publication Analysis

Top Keywords

genome sequencing
8
sars-cov-2 cat
8
sars-cov-2 infection
8
sars-cov-2
7
infection
5
report genome
4
sequencing sars-cov-2
4
cat
4
cat felis
4
felis catus
4

Similar Publications

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure.

View Article and Find Full Text PDF

is a recently described species that can be differentiated from . However, in clinical settings, they are frequently misidentified as . In this study, our objective was to conduct genomic characterization and bioinformatics analysis of subsp.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments.

Methods: The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics.

View Article and Find Full Text PDF

Non-syndromic hearing loss (NSHL) is a genetically heterogeneous disorder accounting for almost 70% of the total congenital hearing loss. The implementation of rapid advanced sequencing methods has significantly contributed to the correct molecular diagnosis for several rare genetic disorders, including NHSL. Features of two probands with NHSL were clinically and genetically evaluated.

View Article and Find Full Text PDF

Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts.

Genome Biol Evol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria.

The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!