Neo-Darwinism characterizes biological adaptation as a one-sided process, in which organisms adapt to their environment but not vice versa. This asymmetric relationship-here called Williams' asymmetry-is called into question by Niche Construction Theory, which emphasizes that organisms and their environments often mutually affect each other. Here, we clarify that Williams' asymmetry is specifically concerned with (quasi)-directed modifications toward phenotypes that increase individual fitness. This directedness-which drives the adaptive fit between organism and environment-entails far more than the mere presence of cause-effect relationships. We argue that difficulties with invoking fitness as the guiding principle of adaptive evolution are resolved with an appropriate definition of fitness and that objections against Williams' asymmetry reflect confusions about the nature of biological adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544502 | PMC |
http://dx.doi.org/10.1111/evo.14502 | DOI Listing |
Trop Anim Health Prod
December 2024
Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.
View Article and Find Full Text PDFFolia Microbiol (Praha)
December 2024
Federal Research Center "Pushchino Scientific Center for Biological Research", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation.
Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.
View Article and Find Full Text PDFElife
December 2024
Biozentrum, Universität Basel, Basel, Switzerland.
As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.
View Article and Find Full Text PDFNoncoding RNA
November 2024
School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA.
RNA plays important roles in the regulation of gene expression in response to environmental stimuli. , a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in . There are three mechanisms through which fine tunes the transcriptional response to cold temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!