The abnormal self-assembly of β-amyloid (Aβ) peptides and their deposition in the brain is a major pathological feature of Alzheimer's disease (AD), the most prevalent chronic neurodegenerative disease affecting nearly 50 million people worldwide. Here, we report a newly discovered function of magnetoelectric nanomaterials for the dissociation of highly stable Aβ aggregates under low-frequency magnetic field. We synthesized magnetoelectric BiFeO-coated CoFeO (BCFO) nanoparticles, which emit excited charge carriers in response to low-frequency magnetic field without generating heat. We demonstrated that the magnetoelectric coupling effect of BCFO nanoparticles successfully dissociates Aβ aggregates via water and dissolved oxygen molecules. Our cytotoxicity evaluation confirmed the alleviating effect of magnetoelectrically excited BCFO nanoparticles on Aβ-associated toxicity. We found high efficacy of BCFO nanoparticles for the clearance of microsized Aβ plaques in ex vivo brain tissues of an AD mouse model. This study shows the potential of magnetoelectric materials for future AD treatment using magnetic field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094672 | PMC |
http://dx.doi.org/10.1126/sciadv.abn1675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!