Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: Aim of nephrologists is to delay the outcome and reduce the number of patients undergoing renal failure (RF) by applying prevention protocols and accurately monitoring chronic kidney disease (CKD) patients. General practitioners and nephrologists are involved in the first and in the late stages of the disease, respectively. Early diagnosis of CKD is an important step in preventing the progression of kidney damage. Our aim was to review publications on machine learning algorithms (MLAs) that can predict early CKD and its progression.
Methods: We conducted a systematic review and selected 55 articles on the application of MLAs in CKD. PubMed, Medline, Scopus, Web of Science and IEEE Xplore Digital Library of the Institute of Electrical and Electronics Engineers were searched. The search terms were chronic kidney disease, artificial intelligence, data mining and machine learning algorithms.
Results: MLAs use enormous numbers of predictors combining them in non-linear and highly interactive ways. This ability increases when new data is added. We observed some limitations in the publications: (i) databases were not accurately reviewed by physicians; (ii) databases did not report the ethnicity of the patients; (iii) some databases collected variables that were not important for the diagnosis and progression of CKD; (iv) no information was presented on the native kidney disease causing CKD; (v) no validation of the results in external independent cohorts was provided; and (vi) no insights were given on the MLAs that were used. Overall, there was limited collaboration among experts in electronics, computer science and physicians.
Conclusions: The application of MLAs in kidney diseases may enhance the ability of clinicians to predict CKD and RF, thus improving diagnostic assistance and providing suitable therapeutic decisions. However, it is necessary to improve the development process of MLA tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40620-022-01302-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!