A promising hierarchical nanocomposite of MIL-53(Al)/ZnO was synthesized as a visible-light-driven photocatalyst to investigate the degradation of amoxicillin (AMX). MIL-53(Al)/ZnO ultrafine nanoparticles were obtained by preparing Zn-free MIL-53Al and employing it as a reactive template under hydrothermal and chemical conditions. The synthesized nanocomposite (MIL-53(Al)/ZnO) has a low content of Al > 1.5% with significantly different characterizations of the parent compounds elucidated by various analyses such as SEM, TEM, XRD, EDX, and UV-Vis. The effect of operational parameters (catalyst dose (0.2-1.0 g/L), solution pH (3-11), and initial AMX concentration (10-90 mg/L)) on the AMX removal efficiency was studied and optimized by the response surface methodology. A reasonable goodness-of-fit between the expected and experimental values was confirmed with correlation coefficient (R) equal to 0.96. Under the optimal values, i.e., initial AMX concentration = 10 mg/L, solution pH ~ 4.5, and catalyst dose = 1.0 g/L, 100% AMX removal was achieved after reaction time = 60 min. The degradation mechanism and oxidation pathway were vigorously examined. The AMX degradation ratios slightly decreased after five consecutive cycles (from 78.19 to 62.05%), revealing the high reusability of MIL-53(Al)/ZnO. The AMX removal ratio was improved with enhancers in order ([Formula: see text]> HO > SO). The results proved that 94.12 and 98.23% reduction of COD were obtained after 60 and 75 min, respectively. The amortization and operating costs were estimated at 3.3 $/m for a large-scale photocatalytic system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508224 | PMC |
http://dx.doi.org/10.1007/s11356-022-20527-0 | DOI Listing |
Bioresour Technol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062 China. Electronic address:
To effectively address the contamination caused by antibiotic misuse, this study was conducted to enhance the removal of amoxicillin (AMX) and penicillin sodium (PEN) by incorporating black soldier fly larvae (BSFL). The results showed that BSFL increased the degradation rates of AMX and PEN to 71.00 % and 80.
View Article and Find Full Text PDFGels
November 2024
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile.
Cationic hydrogel particles (CHPs) crosslinked with glutaraldehyde were synthesized and characterized to evaluate their removal capacity for two globally consumed antibiotics: amoxicillin and sulfamethoxazole. The obtained material was characterized by FTIR, SEM, and TGA, confirming effective crosslinking. The optimal working pH was determined to be 6.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
Researchers in the field of photocatalysis are interested in finding a solution to the problem of charge transfer and recombination in photodegradation mechanisms. The ideal photoactive catalyst would be inexpensive, environmentally friendly, easily manufactured, and highly efficient. Graphitic carbon nitride (g-CN) and metal oxide (MOx) based nanocomposites (g-CN/MOx) are among the photocatalysts that provide the best results in terms of charge transfer capacity, redox capabilities, and charge recombination inhibition.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
Amoxicillin (AMX) is a common antibiotic used in both human and veterinary medicine in order to both cure and avoid bacterial infections. Traces of AMX have been found in ground and surface water, urban effluents, water, and wastewater treatment facilities due to its widespread use. The level of hazard and disposal of this class of micropollutants is the reason for concern.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Department of Chemistry, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
Novel photocatalysts were synthesized through the association of carbon quantum dots (CQDs) with commercial (P25) titanium dioxide (TiO) by sonication. The resulting TiO/CQDs composite was then incorporated into the polyamide 66 (PA66) biopolymer nanofibers using the electrospinning technique, considering a composite nanoparticles-to-polymer ratio of 1:2 in the electrospinning precursor solution. The produced nanofibers presented suitable morphology and were tested for the photocatalytic degradation under simulated solar radiation of 10 mg L of amoxicillin (AMX) and sulfadiazine (SDZ), in phosphate buffer solution (pH 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!