A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morphological features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting discoveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable research on non-human primates (NHP) and human brains. The advances in artificial intelligence (AI) and computational resources bring great opportunity to 'smart' imaging systems, i.e., to automate, speed up, optimize and upgrade the imaging systems with AI and computational strategies. In this light, we review the important computational techniques that can support smart systems in brain-wide imaging at single-cell resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095808 | PMC |
http://dx.doi.org/10.1186/s40708-022-00158-4 | DOI Listing |
Elife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study.
View Article and Find Full Text PDFNeuroscience
January 2025
Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:
Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulate itch through the neural circuits housed in the brain and spinal cord. However, we are yet to fully understand the identities of, and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Adolescent-onset schizophrenia (AOS) is relatively rare, under-studied, and associated with more severe cognitive impairments and poorer outcomes than adult-onset schizophrenia. Neuroimaging has shown altered regional activations (first-order effects) and functional connectivity (second-order effects) in AOS compared to controls. The pairwise maximum entropy model (MEM) integrates first- and second-order factors into a single quantity called energy, which is inversely related to probability of occurrence of brain activity patterns.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
Purpose: Temporal lobe epilepsy (TLE) is a brain network disorder closely associated with synaptic loss and has a genetic basis. However, the in vivo whole-brain synaptic changes at the network-level and the underlying gene expression patterns in patients with TLE remain unclear.
Methods: In this study, we utilized a positron emission tomography with the synaptic vesicle glycoprotein 2 A radioligand [F]SynVesT-1 cohort and two independent transcriptome datasets to investigate the topological properties of the synaptic density similarity network (SDSN) in TLE and its correlation with significantly dysregulated risk genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!