The remediation of dyes in wastewater using activated carbon produced from sewage sludge pyrolysis char (PYC) is an environmentally friendly and sustainable process. However, traditional activators can cause corrosion of the processing facility, thereby increasing the costs of waste disposal. Here, activated carbons were prepared from sewage sludge PYC, and the effects of activation conditions (different activators, temperature and time, and char:activator mass ratio) on their specific surface areas and adsorption of iodine and methylene blue (MB; model dye) were studied. The results showed that a value of 952 m/g could be attained for the specific surface area and values of 882 and 162 mg/g for the adsorption of iodine and MB, respectively, by heating PYC with KHCO (PYC- KHCO: 1:2 w/w) for 60 min at 800 ℃. Compared with activation by KOH, the adsorption of MB using PYC-KHCO was slightly lower but the yield was 13.7% higher. Optimization of the activation process using surface response modelling indicated that sensitivity of three key factors to the adsorption of iodine and MB followed the order: Mass ratio > temperature > time. Systematic investigation of the effects of time, pH and temperature on the removal of MB by the activated carbon revealed that adsorption conformed to the Langmuir model and pseudo-second-order kinetics. The proposed mechanisms of MB adsorption involved ion exchange, functional group complexation and physical/π-π interactions. This study provides a basis for the efficient remediation of dyes in wastewater using activated carbon prepared from sustainable sewage sludge PYC and green chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2077130DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
sewage sludge
16
adsorption iodine
12
remediation dyes
8
dyes wastewater
8
wastewater activated
8
sludge pyc
8
temperature time
8
mass ratio
8
specific surface
8

Similar Publications

Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.

View Article and Find Full Text PDF

In this research, fresh pistachio green shell as an agricultural waste was blended with activated carbon to study the adsorption process of mercury (II) from several aqueous solutions with various concentrations. Central Composite Design under Response Surface Methodology was statistically used to consider the independent variables involving pH, contact time, fresh pistachio green shell powder dosage, initial concentration of mercury (II) and activated carbon dosage effects on the mercury (II) removal. pH of 6.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

To investigate the effect of space tightness on inerting of liquid CO. Pottery jar liquor warehouse was selected as the research subject, numerical simulation was utilized to study the spatial inerting and CO migration and distribution under different space tightness degrees and injection flow rates. The results revealed that after injection into the space, CO distributed like an "umbrella", the CO protective layer undergoes a dynamic process of concentration increase and thickness enhancement, achieving upward accumulation and migration of the inert medium protective layer.

View Article and Find Full Text PDF

Lung Ischemia-reperfusion injury (LIRI) is a risk during lung transplantation that can cause acute lung injury and organ failure. In LIRI, the NF-E2-related factor 2(Nrf2)/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway are two major pathways involved in regulating oxidative stress and inflammation, respectively. Myrtenol, a natural compound with anti-inflammatory and antioxidant properties, has potential protective effects against IRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!