The present study reports the synthesis and characterization of hydrophobic deep eutectic solvents (HDES) based on fatty acids and tetrabutylammonium bromide (TBAB) or 1-octanol using Fourier transform infrared spectroscopy, and the analysis of the physicochemical properties (viscosity, density, electrical conductivity, and water content) of these solvents. A carbon paste electrode modified with 6.0% (m/m) decanoic acid and TBAB-based HDES was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The oxidation peak currents of the proposed electrode were enhanced by its high electrochemical activity, fast electron transfer rate, and high surface area, while a remarkable decrease was observed in the peak potential separation. The electrochemical determination of hydroquinone (HQ) was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV). The electrode response was found to be linear in the HQ concentration range of 2.5 × 10-3.0 × 10 mol L, with the limit of detection (LOD) of 7.7 × 10 mol L. The method was successfully applied for HQ determination in dermatological creams.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ay00473aDOI Listing

Publication Analysis

Top Keywords

hydrophobic deep
8
deep eutectic
8
carbon paste
8
paste electrode
8
enhancing electrochemical
4
electrochemical sensitivity
4
sensitivity hydroquinone
4
hydroquinone hydrophobic
4
eutectic solvent-based
4
solvent-based carbon
4

Similar Publications

Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.

View Article and Find Full Text PDF

Study on the antioxidant and antiosteoporotic activities of the oyster peptides prepared by ultrasound-assisted enzymatic hydrolysis.

Ultrason Sonochem

December 2024

Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH.

View Article and Find Full Text PDF

The urge to adopt cleaner technologies drives the search for novel and sustainable materials such as Hydrophobic Natural Deep Eutectic Solvents (HNADESs), a new class of green solvents characterized by their low toxicity, biodegradability, and tunable properties, aiming to be applied in various fields for handling non-polar substances. In this work, the solubilization of hydrocarbons in type V HNADESs (non-ionic organic molecules) formed by mixing carvone, a natural monoterpenoid, with organic acids (hexanoic to decanoic acids) is examined by applying both experimental and theoretical approaches. The synthesis and physicochemical characterization of different HNADESs allowed us to tailor their properties, aiming for optimal interactions with desired hydrocarbons.

View Article and Find Full Text PDF

Differences and mechanisms of color deterioration in three types of ready-to-eat shellfishes during storage.

Food Chem

December 2024

State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China. Electronic address:

Ready-to-eat (RTE) abalones, scallops and oysters were prepared through a process of cooking, drying, vacuum packaging, and high-temperature sterilization, and were subjected to accelerated storage. Upon storage, the three RTE shellfishes all showed color deterioration, as indicated by darker color, decreased L* and W* values, and increased a* value. In contrast, the color deterioration of RTE oysters was more pronounced.

View Article and Find Full Text PDF

Carbon sequestration in deep saline aquifers is a promising strategy for reducing atmospheric CO emissions. However, salt precipitation triggered by the evaporation of formation brine into injected supercritical CO can cause injectivity and containment issues in near-wellbore regions. Predicting the distribution of precipitated salts and their impact on near-wellbore properties remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!