Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: The aim of this study was to evaluate the diversity and potential for horizontal transfer of amikacin resistance genes from the human gut.
Methods And Results: A library of human faecal microbiota was constructed and subjected to functional screening for amikacin resistance. In total, five amikacin resistance genes that conferred relatively high amikacin resistance, with minimum inhibitory concentrations (MICs) ranging from 64 to >512, were identified from the library, including a novel aminoglycoside acetyltransferase gene and a 16S rRNA methyltransferase (MTase) gene, labelled aac (6')-Iao and rmtI, respectively. AAC(6')-Iao showed the highest identity of 48% to AAC(6')-Ian from a clinical isolate Serratia marcescens, whereas RmtI shared the closest amino acid identity of 32% with ArmA from Klebsiella pneumonia. The MICs of these five subclones to six commonly used aminoglycosides were determined. Susceptibility analysis indicated that RmtI was associated with high resistance phenotype to 4,6-disubstituted 2-DOS aminoglycosides, whereas AAC(6')-Iao conferred resistance to amikacin and kanamycin. In addition, kinetic parameters of AAC(6')-Iao were determined, suggesting a strong catalytic effect on amikacin and kanamycin.
Conclusions: Antibiotic resistance genes with low identity to known sequences can be uncovered by functional metagenomics. In addition, the diversity and prevalence of amikacin resistance genes merit further investigation in extended habitats, especially the 16S rRNA MTase gene that might have been underestimated in previous cognition.
Significance And Impact Of Study: Two novel amikacin resistance genes were identified in this study, including a 16S rRNA methyltransferase gene rmtI and an aminoglycoside acetyltransferase gene aac(6')-Iao. This work would contribute to the in-depth study of the diversity and horizontal transfer potential of amikacin resistance genes in the microbiome of the human gut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.15615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!