The Kirsten rat sarcoma oncoprotein (KRAS) has been punctuated by drug development failures for decades due to frequent mutations that occur mostly at codon 12 and the seemingly intractable targeting of the protein. However, with advances in covalent targeting, the oncoprotein is being expunged from the 'undruggable' list of proteins. This feat has seen some covalent drugs at different stages of clinical trials. The advancement of AMG510 and MRTX849 as inhibitors of cysteine mutated KRAS (KRAS) to phase-III clinical trials informed the biased selection of AMG510 and MRTX849 for this study. Despite this advance, the molecular and atomistic modus operandi of these drugs is yet to come to light. In this study, we employed computational tools to unravel the atomistic interactions and subsequent conformational effects of AMG510 and MRTX849 on the mutant KRAS. It was revealed that AMG510 and MRTX849 complexes presented similar total free binding energies, (Δ), of -88.15 ± 5.96 kcal/mol and -88.71 ± 7.70 kcal/mol, respectively. Gly10, Lys16, Thr58, Gly60, Glu62, Glu63, Arg68, Asp69, Met72, His95, Tyr96, Gln99, Arg102 and Val103 interacted prominently with AMG510 and MRTX849. These residues interacted with the pharmacophoric moieties of AMG510 and MRTX849 via hydrogen bonds with decreasing bond lengths at various stages of the simulation. These interactions together with pi-pi stacking, pi-sigma and pi-alkyl interactions induced unfolding of switch I whiles compacting switch II, which could interrupt the binding of effector proteins to these interfaces. These insights present useful atomistic perspectives into the success of AMG510 and MRTX849 which could guide the design of more selective and potent KRAS inhibitors.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2074141DOI Listing

Publication Analysis

Top Keywords

amg510 mrtx849
32
amg510
8
mrtx849
8
clinical trials
8
kras
5
inside cracked
4
cracked kernel
4
kernel establishing
4
establishing molecular
4
molecular basis
4

Similar Publications

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Introduction: Recent advances in the treatment of -mutant non-small cell lung cancer (NSCLC) have led to the development of KRAS inhibitors, such as sotorasib and adagrasib. However, resistance and disease progression remain significant challenges. In this study, we investigated the therapeutic potential of combining trastuzumab deruxtecan (T-DXd), an anti-HER2 antibody-drug conjugate, with sotorasib in -mutant NSCLC, while also evaluating HER2 expression in NSCLC samples.

View Article and Find Full Text PDF

Development of KRAS Inhibitors and Their Role for Metastatic Colorectal Cancer.

J Natl Compr Canc Netw

January 2025

Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.

Colorectal cancer (CRC) is a heterogeneous group of diseases comprising several molecular subtypes. Comprehensive DNA sequencing is now standard practice to identify these subtype. Until recently, KRAS mutation status in metastatic CRC was primarily used as a biomarker to predict resistance to EGFR inhibition.

View Article and Find Full Text PDF

KRAS inhibitors: resistance drivers and combinatorial strategies.

Trends Cancer

December 2024

Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!