Accurate monitoring of methylglyoxal (MGO) at cell and living level was crucial to reveal its role in the pathogenesis of diabetes since MGO was closely related to diabetes. Herein, a ratiometric fluorescence strategy was constructed based on the capture probe 2,3-diaminonaphthalene (DAN) for the specific detection of MGO. Compared to the fluorescent probes with a single emission wavelength, the ratiometric mode by monitoring two emissions can effectively avoid the interference from the biological background, and provided additional self-calibration ability, which can realize accurate detection of MGO. The proposed method showed a good linear relationship in the range of 0-75 μm for MGO detection, and the limit of detection was 0.33 μm. DAN responded to MGO with good specificity and was successfully applied for detecting the ex vivo MGO level in plasma of KK-Ay mice as a type II diabetes model. Besides, the prepared DAN test strip can be visualized for rapid semi-quantitative analysis of MGO using the naked eye. Furthermore, human skin fibroblasts and HeLa cells were utilized for exogenous MGO imaging, and ex vivo MGO imaging was performed on tissues of KK-Ay mice. All results indicated that the DAN-based ratiometric fluorescence probe can be used as a potential method to detect the level of MGO, thus enabling indications for the occurrence of diabetes and its complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092288 | PMC |
http://dx.doi.org/10.1002/open.202200055 | DOI Listing |
Methods Mol Biol
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
Many membrane proteins on the cell surface are constantly internalized from, and re-delivered to, the plasma membrane. This endocytic cycling, which relies on accurate SNARE-mediated fusion of vesicles containing cargo proteins, is highly important for the function of many proteins such as signaling receptors. While the SNARE proteins that mediate fusion during specific events, such as neurotransmitter and hormone release, in mammalian cells has been heavily studied, the SNARE proteins that mediate surface delivery of specific cargo such as the receptors for these released factors are still not known.
View Article and Find Full Text PDFMethods Appl Fluoresc
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.
Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
A FA1-targeting albumin marker along with apixaban can form a co-binding complex with albumin, resulting in a readily discernible fluorescence color change.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
Hypochlorous acid (HClO) is a well-known inflammatory signaling molecule, while lipid droplets (LDs) are dynamic organelles closely related to inflammation. Using organic small-molecule fluorescence imaging technology to target LDs for precise monitoring of HClO is one of the most effective methods for diagnosing inflammation-related diseases. A thorough investigation of how probes detect biological markers and the influencing factors can aid in the design of probe molecules, the selection of high-performance tools, and the accuracy of disease detection.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China. Electronic address:
Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!