A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recombinant Snail Sialic Acid Aldolase is Promiscuous towards Aliphatic Aldehydes. | LitMetric

Recombinant Snail Sialic Acid Aldolase is Promiscuous towards Aliphatic Aldehydes.

Chembiochem

Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.

Published: July 2022

Aldolases are enzymes that reversibly catalyze the cleavage of carbon-carbon bonds. Here we describe a recombinant sialic acid aldolase originating from the freshwater snail Biomphalaria glabrata (sNPL), and compare its substrate spectrum with a sialic acid aldolase originating from chicken (chNPL). In contrast to vertebrate animals which can synthesize, degrade, and incorporate sialic acids on glycoconjugate ubiquitously, snails (as all mollusks) cannot synthesize sialic acids endogenously, and therefore the biological function and substrate scope of sNPL ought to differ significantly from vertebrate sialic aldolases such as chNPL. sNPL was active towards a series of sialic acid derivatives but was in contrast to chNPL unable to catalyze the cleavage of N-acetylneuraminic acid into N-acetylmannosamine and pyruvate. Interestingly, chNPL and sNPL showed contrasting C4(R)/(S) diastereoselectivity towards the substrates d-mannose and d-galactose in the presence of pyruvate. In addition, sNPL was able to synthesize a series of 4-hydroxy-2-oxoates using the corresponding aliphatic aldehyde substrates in the presence of pyruvate, which could be not achieved by chNPL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202200074DOI Listing

Publication Analysis

Top Keywords

sialic acid
16
acid aldolase
12
catalyze cleavage
8
aldolase originating
8
sialic acids
8
chnpl snpl
8
presence pyruvate
8
sialic
7
acid
5
snpl
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!