This study investigates the thermal decomposition initiation mechanisms and kinetics of poly(α-methylstyrene) (PαMS) under isothermal conditions, using molecular dynamics simulations with the ReaxFF reactive force field. The unimolecular pyrolysis simulations show that the thermal decomposition of the PαMS molecule is initiated mainly by carbon-carbon backbone cleavage in two types at random points along the main chain that leads to different intermediates, and is accompanied by depolymerization reactions that lead to the formation of the final products. The time evolution of typical species in the process of PαMS thermal decomposition at various temperatures presents specific evolution profiles and shows a temperature-dependence effect. Isothermal decomposition kinetic analysis based on PαMS pyrolysis shows that the activation energy varies with the degree of conversion during the thermal decomposition processes, which infers that the decomposition process at different conversions may have different reaction mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077710PMC
http://dx.doi.org/10.1039/c7ra12467hDOI Listing

Publication Analysis

Top Keywords

thermal decomposition
16
initiation mechanisms
8
kinetic analysis
8
isothermal decomposition
8
molecular dynamics
8
decomposition
7
mechanisms kinetic
4
analysis isothermal
4
decomposition polyα-methylstyrene
4
polyα-methylstyrene reaxff
4

Similar Publications

Enhancement of mechanical properties in reactive polyurethane film via in-situ assembly of embedded cellulose nanocrystals.

Int J Biol Macromol

January 2025

Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:

Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.

View Article and Find Full Text PDF

Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.

View Article and Find Full Text PDF

Preparation, Thermal Properties and Decomposition Course of Highly Resistant Potato Starch Graft Poly(Cinnamyl Methacrylate) Materials.

Molecules

January 2025

Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.

The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.

View Article and Find Full Text PDF

Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils.

Molecules

January 2025

Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.

In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures.

View Article and Find Full Text PDF

The Influence of Leather Type on Thermal and Smoke-Generating Properties.

Materials (Basel)

January 2025

Faculty of Safety Engineering and Civil Protection, Fire University, 52/54 Slowackiego Street, 01-629 Warsaw, Poland.

The main purpose of this article was to determine the smoke-generating and thermal properties of selected types of natural leather. Differences in the amount of smoke generated from the type of finish used in the technological processing of leather were observed. Research has shown that the burnt nubuck (367) sample with exposure at the heat flux intensity of 25 kW/m without the presence of a pilot burner flame achieved the highest value of the specific optical density D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!