Herein, we develop a photocurable ABA triblock copolymer-based ion gel, which can be converted from a thermally processable, physically crosslinked ion gel to a thermally and mechanically stable, chemically crosslinked ion gel photoinduced dimerization. The A block consists of a random copolymer of -isopropylacrylamide and a coumarin-containing acrylate monomer, while the B block consists of an ionic liquid-philic poly(ethylene oxide). Due to the upper critical solution temperature-type phase behavior of the A block, the ABA triblock copolymer undergoes gel-to-sol transitions in a hydrophobic ionic liquid as the temperature is increased. Furthermore, under ultraviolet (UV) light irradiation, the physical crosslinks formed by association of the A blocks in the gel at low temperatures become chemically crosslinked as a result of photodimerization of the coumarin moieties in the A block; this results in conversion from a thermo-reversible, physically crosslinked ion gel to a thermo-irreversible, chemically crosslinked ion gel. The rheological changes of the ion gel upon UV irradiation have been investigated in detail. In addition, photopatterning of the ion gel has been realized by exploiting the photocurable behavior of the ABA triblock copolymer in the ionic liquid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077674 | PMC |
http://dx.doi.org/10.1039/c7ra13181j | DOI Listing |
J Phys Chem B
January 2025
Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing University of Chemical Technology, State Key Laboratory of Organic-Inorganic Composites, 15 North Third Ring Road East, 37830, Beijing, CHINA.
Polymers with strong electron-withdrawing groups (e.g., cyano-containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China.
Electron release and transfer are pivotal to the efficiency of multiple biogeochemical and pollutant processes. Despite substantial efforts to develop electron-transfer characterization techniques, visualization of electron transfer remains challenging. This study introduces an innovative strategy for mapping electron-transfer distance using nanoscale zerovalent iron (nZVI) as a case study.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain.
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!