The unidirectional transport of liquid nanodroplets is an important topic of research in the field of drug delivery, labs on chips, micro/nanofluidics, and water collection. Inspired by nature a nonparallel surface (NPS) is modelled in this study for pumpless water transport applications. The dynamics of water transport is analyzed with the aid of Molecular Dynamics (MD) simulations. There were five different types of NPSs namely A1, A2, A3, A4, and A5 utilized in this study, with separation angles equal to 5°, 7°, 9°, 11°, and 13° respectively. The water droplet was placed at the beginning of the open end of the NPS and it moved spontaneously towards the cusp of the surface in all cases except for the 13° NPS. The size of the water droplet, too, was altered and four different sizes of water droplets (3000, 4000, 5000, and 6000 molecules) were utilized in this study. Furthermore, the surface energy parameter of the NPS was also changed and four different values, 7.5 eV, 17.5 eV, 27.56 eV, 37.5 eV were assigned to the surface in order to represent a surface with hydrophobic to hydrophilic characteristics. In addition the importance of water bridge formation for its spontaneous propulsion with the influence of surface energy and droplet size is also discussed in this study. Moreover, a unique design is modelled for the practical application of water harvesting and a large size water droplet is formed by combining two water droplets placed inside a NPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076509PMC
http://dx.doi.org/10.1039/c9ra08968cDOI Listing

Publication Analysis

Top Keywords

water droplet
12
water
11
unidirectional transport
8
molecular dynamics
8
water transport
8
utilized study
8
size water
8
water droplets
8
surface energy
8
surface
7

Similar Publications

Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.

View Article and Find Full Text PDF

Holocellulose nanofibrils biomimetic entrapment of liquid metal enable ultrastrong, tough, and lower-voltage-driven paper device.

Carbohydr Polym

March 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China. Electronic address:

Integrating liquid metal (LM) with wood fibers for flexible paper electronics is intriguing yet extremely challenging due to poor mechanical performance. Here, we disclose a hemicellulose trapping strategy to achieve exceptional ultrastrong and tough LM-based paper electronics. Holocellulose nanofibrils (HCNFs) with hemicellulose retention of approximately 20 % are found to effectively entrap nanoscale LM within the fibril network, analogous to spider silk capturing small water droplets.

View Article and Find Full Text PDF

Enzymatic grafting of 5-O-succinyl erythorbyl myristate onto chitosan to improve its emulsifying properties.

Carbohydr Polym

March 2025

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.

View Article and Find Full Text PDF

Flurbiprofen (FBP) is poorly water-soluble BCS class II drug with anti-inflammatory and analgesic effects, used to treat arthritis and degenerative joint diseases. This study was aimed to develop SNEDDS loaded with FBP. Six SNEDDS using two oils olive oil (F, F, F) and castor oil (F, F, F) with three different Smix ratios consisting of Tween 20 and PEG 400 (1:1, 1:2, 2:1) were prepared and characterized.

View Article and Find Full Text PDF

Flexible Mushroom-Like Cross-Scale Surface with Extreme Pressure Resistance for Telecommunication Lines Anti-Icing/Deicing.

ACS Appl Mater Interfaces

January 2025

School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China.

Ice accretion caused by freezing rain or snowstorms is a common phenomenon in cold climates that seriously threatens the safety and reliability of telecommunication lines and other overhead networks. Various anti-icing strategies have been demonstrated through surface engineering to delay ice formation. However, existing anti-icing surfaces still encounter several challenges; for example, surfaces are prone to ice-pinning formation due to the impact of supercooled droplets, which leads to a loss of anti-icing effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!