Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co } possesses defined structure and potential catalytic active centers of {CoNO} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co } catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076674 | PMC |
http://dx.doi.org/10.1039/c9ra08068f | DOI Listing |
Harm Reduct J
January 2025
Asociación Bajacaliforniana de Salud Pública A.C, Tijuana, Baja California, Mexico.
Background: Xylazine is a α2-adrenergic receptor agonist, used for sedation in veterinary contexts. Although it is increasingly found in overdose deaths across North America, the clinical management of xylazine-involved overdoses has not been extensively studied, especially in community-based harm reduction settings. Here we present a clinical series of xylazine-involved overdose and share the clinical approach and lessons learned by a community overdose response team in Tijuana, Mexico amidst the arrival of xylazine.
View Article and Find Full Text PDFDev Biol
January 2025
Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO 80309. Electronic address:
Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
Designing efficient and cost-effective electrocatalysts toward oxygen reduction reaction (ORR) under demanding acidic environments plays a critical role in advancing proton exchange membrane fuel cells (PEMFCs). Metal-nitrogen-carbon (M-N-C) catalysts with atomically dispersed metals have gained attention for their affordability, excellent catalytic performance, and distinctive features including consistent active sites and high atomic utilization. Over the past decade, significant achievements have been made in this field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!