The disorder of Alzheimer's (AD) is defined as a gradual deterioration of cognitive functions, such as the failure of spatial cognition and short-term memory. Besides difficulties in memory, a person with this disease encounters visual processing difficulties and even awareness and identifying of their beloved ones. Nowadays, recent technologies made this possible to connect everything that exists around us on Earth through the Internet, this is what the Internet of Things (IoT) made possible which can capture and save a massive amount of data that are considered very important and useful information which then can be valuable in training of the various state-of-the-art machine and deep learning algorithms. Assistive mobile health applications and IoT-based wearable devices are helping and supporting the ongoing health screening of a patient with AD. In the early stages of AD, the wearable devices and IoT approach aim to keep AD patients mentally active in all of life's daily activities, independent from their caregivers or any family member of the patient. These technological solutions have great potential in improving the quality of life of an AD patient as this helps to reduce pressure on healthcare and to minimize the operational cost. The purpose of this study is to explore the State-of-the-Art wearable technologies for people with AD. Significance, challenges, and limitations that arise and what will be the future of these technological solutions and their acceptance. Therefore, this study also provides the challenges and gaps in the current literature review and future directions for other researchers working in the area of developing wearable devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054450PMC
http://dx.doi.org/10.1155/2022/3224939DOI Listing

Publication Analysis

Top Keywords

wearable devices
16
iot-based wearable
8
technological solutions
8
devices
4
devices patients
4
patients suffering
4
suffering alzheimer
4
alzheimer disease
4
disease disorder
4
disorder alzheimer's
4

Similar Publications

Wearable optical coherence tomography angiography probe with extended depth of field.

J Biomed Opt

January 2025

Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.

Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.

View Article and Find Full Text PDF

Objective And Rationale: Children's clinical pain phenotypes are complex, and there is a lack of objective biological diagnostic markers and cognitive patterns. Detecting physiological signals through wearable devices simplifies disease diagnosis and holds the potential for remote medical applications.

Method And Results: This research established a pain recognition model based on AI skin potential (SP) signal analysis.

View Article and Find Full Text PDF

This study aims to assess the reliability and accuracy of a novel portable cardiopulmonary function meter, "Booster," developed by our research group, across various exercise intensities and modalities. The study was segmented into reliability and validity assessments. Twenty-two male participants underwent reliability testing, conducting two sequential tests on a treadmill while wearing the Booster to measure VO and VE among other parameters at increasing intensities.

View Article and Find Full Text PDF

Background: Higher levels of preoperative physical activity are associated with improved outcomes after pancreatectomy, but it remains unclear if preoperative activity levels are modifiable.

Methods: Patients undergoing pancreatectomy were randomized 1:1 to a telephone-based intervention at least one week before surgery or to control. All patients wore wearable devices to remotely collect physical activity and clinical data.

View Article and Find Full Text PDF

Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices.

Carbohydr Polym

March 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China. Electronic address:

To achieve the green and sustainable development of environment, biocompatible hydrogels with exceptional ionic conductivity and flexibility are highly desired for intelligent and wearable sensors. However, it remains a great challenge to obtain biopolymer hydrogel-based sensors with high transparency, excellent mechanical properties, and good adhesion ability simultaneously. Herein, starch/polyacrylamide double-network hydrogel is achieved to endow the multifunctionality of traditional hydrogel sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!