The biomimetic coating polydopamine (PDA) has emerged as a promising coating material for various applications. However, the mechanism of PDA deposition onto surfaces is not fully understood, and the coating components of PDA and its relation to the putative intermediate 5,6-dihydroxyindole (DHI) are still controversial. This investigation discloses the deposition mechanisms of dopamine (DA)-based coatings and DHI-based coatings onto silicon surfaces by monitoring the nanoscale deposition of both coatings using high-precision ellipsometry. We posit that the rapid and instantaneous nano-deposition of PDA coatings onto silicon surface in the initial stages critically involves the oxidation of DHI and/or its related oligomers. Our studies also show that the slow conversion of DA to DHI in PDA solution and the coupling between DA and DHI-derived precursors could be crucial for subsequent PDA coating growth. These findings elucidate the critical role of DHI, acting as an 'initiator' and a 'cross linker', in the PDA coating formation. Overall, our study provides important information on the early stage nano-deposition behavior in the construction of PDA coatings and DHI-based coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083950PMC
http://dx.doi.org/10.1039/c8ra04472dDOI Listing

Publication Analysis

Top Keywords

nanoscale deposition
8
coatings
8
pda
8
coatings dhi-based
8
dhi-based coatings
8
coatings silicon
8
pda coatings
8
pda coating
8
coating
5
insights nanoscale
4

Similar Publications

Platinum single atoms on titania aid dye photodegradation whereas platinum nanoparticles do not.

Nanoscale

January 2025

Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.

The photocatalytic degradation of unwanted organic species has been investigated for decades using modified and non-modified titania nanostructures. In the present study, we investigate the co-catalytic effect of single atoms (SAs) of Pt and Pt nanoparticles on titania substrates on the degradation of the two typical photodegradation model pollutants: Acid Orange 7 (AO7) and Rhodamine B (RhB). For this, we use highly defined sputter deposited anatase layers and load them with Pt SAs at different loading densities or alternatively with Pt nanoparticles.

View Article and Find Full Text PDF

The electrical resistivity of conventional metals such as copper is known to increase in thin films as a result of electron-surface scattering, thus limiting the performance of metals in nanoscale electronics. Here, we find an unusual reduction of resistivity with decreasing film thickness in niobium phosphide (NbP) semimetal deposited at relatively low temperatures of 400°C. In films thinner than 5 nanometers, the room temperature resistivity (~34 microhm centimeters for 1.

View Article and Find Full Text PDF

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.

View Article and Find Full Text PDF

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!