The A-type sandwich polyoxometalates of [(HOSnOH)(PWO)] (PWSn) and [(OCeO)(PWO)] (PWCe) were immobilized for the first time into the porous metal-organic framework MIL-101(Cr). FT-IR, powder X-ray diffraction, SEM-EDX, ICP analysis, N adsorption and thermogravimetric analysis collectively confirmed immobilization and good distribution of polyoxometalates into cages of MIL-101(Cr). The catalytic activities of the homogeneous PWSn and PWCe and the corresponding heterogeneous catalysts were examined in the oxidation of sulfides to sulfones with HO as the oxidant at room temperature. The effects of different dosages of polyoxometalates, type of solvent, reaction time, amount of catalyst and oxidant in this catalytic system were investigated. The new PWSn@MIL-101 and PWCe@MIL-101 nanocomposites exhibited good recyclability and reusability in at least five consecutive reaction cycles without significant loss of activity or selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084184 | PMC |
http://dx.doi.org/10.1039/c8ra03659d | DOI Listing |
RSC Adv
January 2025
School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.
View Article and Find Full Text PDFSmall
January 2025
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
As global demand for clean and sustainable energy continues to rise, fuel cell technology has seen rapid advancement. However, the presence of trace impurities like carbon monoxide (CO) and hydrogen sulfide (H₂S) in hydrogen fuel can significantly deactivate the anode by blocking its active sites, leading to reduced performance. Developing electrocatalysts that are resistant to CO and H₂S poisoning has therefore become a critical priority.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China. Electronic address:
Sulfide mineral oxidation has been recognized as the key driver of arsenic (As) and antimony (Sb) mobility in mining-impacted groundwater. However, the role of carbonate and silicate weathering and secondary mineral precipitation in this process remain unknown. A comprehensive geochemical study of groundwater was conducted in an Sb-mining area, Hunan, China, with samples collected from aquifers of the Xikuangshan Formation (Dx), the Shetianqiao Formation (Ds ), and the Lower Carboniferous Formation (Cy).
View Article and Find Full Text PDFMitochondrion
January 2025
The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine.
Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!