Facile synthesis and optical properties of colloidal quantum dots/ZnO composite optical resonators.

RSC Adv

Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science Shanghai 201800 China

Published: January 2018

We present a novel colloidal quantum dot (CQD)/ZnO whispering gallery mode microcavity composite. The whispering gallery mode emission of the CQDs induced by the ZnO microcavity is realized. The resonant properties of the composite optical cavities are systematically investigated, and the obtained results are supported by finite element method simulations. The work presents a new research platform to study light-matter interactions in such a composite microcavity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077279PMC
http://dx.doi.org/10.1039/c7ra12293dDOI Listing

Publication Analysis

Top Keywords

colloidal quantum
8
composite optical
8
whispering gallery
8
gallery mode
8
facile synthesis
4
synthesis optical
4
optical properties
4
properties colloidal
4
quantum dots/zno
4
composite
4

Similar Publications

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

Solvent Engineering in Ligand Exchange of the Hole Transport Layer Enables High-Performance PbS Quantum Dot Solar Cells.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China.

The performance of lead sulfide colloidal quantum dot (PbS-CQD) solar cells has long been hindered by interface defects in the transport layer. Traditionally, 1,2-ethanedithiol (EDT), used in solid-state ligand exchange, has been a common choice as the hole transport layer (HTL) in many PbS-CQD solar cells. However, the rapid reaction rate and chain length mismatch (shorter-chain EDT versus longer-chain oleic acid) during the ligand exchange process often introduce crack defects in the HTL film, resulting in an unexpected low performance.

View Article and Find Full Text PDF

Recently, we reported on the simple, scalable synthesis of quantum-confined one-dimensional (1D) lepidocrocite titanate nanofilaments (1DLs). Herein, we show, using solid-state UV-vis spectroscopy, that reducing the concentration of aqueous 1DL colloidal suspensions from 40 to 0.01 g/L increases the band gap energy and light absorption onset of dried filtered films from ≈3.

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!