AI Article Synopsis

Article Abstract

Hydrogels, one of the most important bioinspired materials, are receiving increasing attention because of their potential applications as scaffolds for artificial tissue engineering and vehicles for drug delivery, However, these applications are always severely limited by their microstructure and mechanical behavior. Here we report the fabrication of a tough polyvinyl alcohol/graphene oxide (PVA/GO) nanocomposite hydrogel through a simple and effective directional freezing-thawing (DFT) technique. The resulting hydrogels show well-developed anisotropic microstructure and excellent mechanical properties with the assistance of DFT method and lamellar graphene. The hydrogels with anisotropic porous structures that consisted of micro-sized fibers and lamellas exhibit high tensile strengths, up to 1.85 MPa with a water content of 90%. More interestingly, the PVA/GO composite hydrogels exhibit the better thermostability, which can maintain the original shape when swollen in hot water (65 °C). In addition, the hydrogels with biocompatibility show good drug release efficiency due to the unique hierarchical structure. The successful synthesis of such hydrogel materials might pave the way to explore applications in biomedical and soft robotics fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079669PMC
http://dx.doi.org/10.1039/c8ra00340hDOI Listing

Publication Analysis

Top Keywords

tough polyvinyl
8
polyvinyl alcohol/graphene
8
alcohol/graphene oxide
8
hydrogels
6
anisotropic tough
4
oxide nanocomposite
4
nanocomposite hydrogels
4
hydrogels potential
4
potential biomedical
4
applications
4

Similar Publications

The adhesion mechanism of mucoadhesive tablets with dissimilar chain flexibility on viscoelastic hydrogels.

Mater Today Bio

February 2025

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.

Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.

View Article and Find Full Text PDF

A Moldable, Tough Mineral-Dominated Nanocomposite as a Recyclable Structural Material.

Small

January 2025

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China.

Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA).

View Article and Find Full Text PDF

Silicon-Enhanced PVA Hydrogels in Flexible Sensors: Mechanism, Applications, and Recycling.

Gels

December 2024

Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix.

View Article and Find Full Text PDF

New thermoplastic poly(ester-ether) elastomers with enhanced mechanical properties derived from long-chain dicarboxylic acid for medical device applications.

J Mater Chem B

December 2024

Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.

Recent advances in medical plastics highlight the need for sustainable materials with desirable elastic properties. Traditional polyester elastomers have been used as alternatives to polyvinyl chloride (PVC) due to their biocompatibility and adjustable mechanical properties. However, these materials often lack the necessary stability and toughness for reliable medical applications.

View Article and Find Full Text PDF

Self-healing PVA/Chitosan/MXene triple network hydrogel for strain and temperature sensors.

Int J Biol Macromol

December 2024

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China. Electronic address:

Conductive hydrogels have attracted intensive attention for their promising applications in flexible electronics, sensors, and electronic skins. However, extremely poor adaptability under cold or dry environmental conditions along with inferior repairability seriously hinders the development of hydrogels in wearable electronics. Here, a triple network conductive hydrogel (PBCP-MXene) was prepared by proportionally mixing polyvinyl alcohol (PVA), borax, chitosan (CS), phytic acid (PA), and MXene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!