Hydrogen stable isotope ratios are critical indicators in environmental geochemical studies for characterizing runoff, determination of groundwater groups and water uptake by plants (generally used in combination with O analysis). While the common technique for this hydrogen isotope measurement is Mass Spectrometry, FTIR (Fourier transform infra-red) spectroscopy may be an alternative method, with the advantage of direct and simple operating measurements. The FTIR spectrometer has the advantage of performing measurements, which can delineate continuous geochemical processes. measurements decrease errors that may be a consequence of sample delivery to the laboratory and off-site analysis procedures. In this study, we have developed a new simple procedure for hydrogen stable isotope ratio measurements. We discovered that the HDO (hydrogen, deuterium, and oxygen) absorbance peak at 2504 cm is the most suitable for water sample direct analysis, with the FTIR device, using a circular sample cell for liquid samples. A case study analyzing water samples from a karstic cave (Sif cave, Israel) verified the following: (a) on-line determination of water D/H ratio can be carried out with the portable FTIR spectrometer (and thus can be used for field measurements such as in the Sif cave) and (b) the D concentration sensitivity achieved was at a 0.01‰ level, with a standard deviation of 0.006‰.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084288PMC
http://dx.doi.org/10.1039/c8ra03312aDOI Listing

Publication Analysis

Top Keywords

on-line determination
8
hydrogen stable
8
stable isotope
8
ftir spectrometer
8
sif cave
8
water
5
ftir
5
measurements
5
determination deuterium
4
deuterium content
4

Similar Publications

The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.

View Article and Find Full Text PDF

AF4/ICP-ToF-MS for the investigation of species-specific adsorption of organometallic contaminants on natural colloidal particles.

J Hazard Mater

January 2025

Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, Berlin 12489, Germany. Electronic address:

Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e.

View Article and Find Full Text PDF

This work investigates the impact of rainfall on cellular communication links, leveraging smartphone-collected measurements. While existing studies primarily focus on line-of-sight (LoS) microwave propagation environments, this work explores the impact of rainfall on typical signal metrics over cellular links when the LoS path is not guaranteed. We examine both small-scale and large-scale variations in signal measurements across dry and rainy days, considering diverse locations and time windows.

View Article and Find Full Text PDF

Automatic monitoring and on-line chiral separation of chiral drug synthesis.

J Chromatogr A

January 2025

College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province 121013, PR China.

Chiral synthesis of single chiral drugs offers high efficiency, controllable costs, and excellent enantioselectivity, making it crucial in the pharmaceutical industry. A significant number of studies on chiral drug synthesis primarily focuses on the design and synthesis of innovative chiral catalysts and ligands with extremely high selectivity, as well as the development of new methods and strategies. Nonetheless, the on-line monitoring of chiral drug synthesis and its underlying mechanisms remain obscure.

View Article and Find Full Text PDF

Design and synthesis of Pt/TiO catalyst with abundant surface hydroxyl for formaldehyde oxidation.

J Hazard Mater

January 2025

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China. Electronic address:

Catalytic oxidation of formaldehyde (HCHO) is a highly effective method for indoor HCHO removal. However, many aspects of the catalytic mechanism remain unclear, making the optimization of catalysts largely empirical. Herein, we report a coupled experimental and computational study of Pt/TiO catalysts, with special focus on the functional roles of surface oxygen vacancies and hydroxyl groups in the catalytic oxidation of HCHO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!