In this work, phase change chalcogenide GeSbTe (GST) thin films were fabricated by magnetron sputtering. The optical properties, especially the optical constants (refractive index and extinction coefficient), of such alloys were systematically studied by investigating their thermally and photo-thermally induced switching between different phases. The results show that GST films are highly tunable in microstructure and optical constants, either by post-annealing at 160 °C, 200 °C, 250 °C and 350 °C, respectively, or by laser irradiation of 1 mW, 3 mW, 5 mW and 10 mW power with beam diameter of 7 μm at 532 nm, respectively. From the structural analysis, we can clearly observe different crystallinities and chemical bonding in the different post-treated GST films. The optical constants of GST films under various phases were obtained from spectrophotometry, by fitting their transmittance data with the Tauc-Lorentz (TL) dispersion model. The refractive index and extinction coefficient exhibit notable change upon annealing and laser irradiation, specifically at 1550 nm, from 3.85 (amorphous) to 6.5 (crystalline) in refractive index. The optical constants have been proved capable of fine tuning the laser irradiation method. Hence, the pronounced adjustability in optical properties due to rapid and repeatable phase change render GST suitable for tunable photonic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080897PMC
http://dx.doi.org/10.1039/c8ra01382aDOI Listing

Publication Analysis

Top Keywords

optical constants
20
phase change
12
gst films
12
laser irradiation
12
thin films
8
optical properties
8
refractive extinction
8
extinction coefficient
8
optical
7
films
5

Similar Publications

TiCT MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry.

J Phys Chem C Nanomater Interfaces

January 2025

Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.

MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.

View Article and Find Full Text PDF

The aim of this study is to conduct a comprehensive bibliometric analysis of CT-based adipose tissue imaging related to coronary artery disease (CAD) to investigate the dynamic development of this field. Web of Science Core Collection was used as our data source to identify relevant documents limited to articles or review articles and written in English with no time restrictions. Then we analyzed the whole trend of publications and utilized VOSviewer and Bibliometrix to conduct a bibliometric analysis including citations, keywords, countries, institutions, authors as well as co-citation analyses of cited references and sources.

View Article and Find Full Text PDF

Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations.

View Article and Find Full Text PDF

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

The Q-Band Energetics and Relaxation of Chlorophylls and as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy.

J Phys Chem Lett

January 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.

Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!