In this paper, a core-shell N-TiO@CuO nanomaterial with increased visible light photocatalytic activity was successfully synthesized using a simple method. By synthesizing ammonium titanyl oxalate as a precursor, N-doped TiO can be prepared, then the core-shell structure of N-TiO@CuO with a catalyst loading of Cu on its surface was prepared using a precipitation method. It was characterized in detail using XRD, TEM, BET, XPS and H-TPR, while its photocatalytic activity was evaluated using the probe reaction of the degradation of methyl orange. We found that the core-shell N-TiO@CuO nanomaterial can lessen the TiO energy band-gap width due to the N-doping, as well as remarkably improving the photo-degradation activity due to a certain loading of Cu on the surfaces of N-TiO supports. Therefore, a preparation method for a novel N, Cu co-doped TiO photocatalyst with a core-shell structure and efficient photocatalytic performance has been provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082458 | PMC |
http://dx.doi.org/10.1039/c8ra02708k | DOI Listing |
Nanoscale
January 2025
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
Microgels are versatile materials with applications across biomedicine, materials science, and beyond. Their controllable size and composition enables tailoring specific properties, yet characterizing their internal structures on the nanoscale remains challenging. Super-resolution fluorescence microscopy (SRFM) effectively analyzes sub-μm structures, including microgels, offering a tool for investigating more complex systems such as core-shell microgels.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Environment and Chemical Engineering, Dalian University Dalian 116622 Liaoning P. R. China
Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
Thin film transistors (TFTs) with InSnZnO (ITZO) and AlO as the semiconductor and dielectric layers, respectively, were investigated, aiming to elevate the device performance. Chemically synthesized CuInS/ZnS core/shell colloidal quantum dots (QDs) were used to passivate the semiconductor/dielectric interface. Compared with the pristine device, the device with the integrated QDs demonstrates remarkably improved electrical performance, including a higher electron mobility and a lower leakage current.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!