Oligonucleotide functionalised metallic nanoparticles (MNPs) have been shown to be an effective tool in the detection of disease-specific DNA and have been employed in a number of diagnostic assays. The MNPs are also capable of facilitating surface enhanced Raman scattering (SERS) enabling detection to become highly sensitive. Herein we demonstrate the expansion of the range of specific SERS-active oligonucleotide MNPs through the use of 12 new Raman-active monomethine and trimethine chalcogenopyrylium and benzochalcogenopyrylium derivatives. This has resulted in an increased ability to carry out multiplexed analysis beyond the current small pool of resonant and non-resonant Raman active molecules, that have been used with oligonucleotide functionalised nanoparticles. Each dye examined here contains a variation of sulphur and selenium atoms in the heterocyclic core, together with phenyl, 2-thienyl, or 2-selenophenyl substituents on the 2,2',6, and 6' positions of the chalcogenopyrylium dyes and 2 and 2' positions of the benzochalcogenopyrylium dyes. The intensity of SERS obtained from each dye upon conjugate hybridisation with a complementary single stranded piece of DNA was explored. Differing concentrations of each dye (1000, 3000, 5000 and 7000 equivalents per NP-DNA conjugate) were used to understand the effects of Raman reporter coating on the overall Raman intensity. It was discovered that dye concentration did not affect the target/control ratio, which remained relatively constant throughout and that a lower concentration of Raman reporter was favourable in order to avoid NP instability. A relationship between the dye structure and SERS intensity was discovered, leaving scope for future development of specific dyes containing substituents favourable for discrimination in a multiplex by SERS. Methine dyes containing S and Se in the backbone and at least 2 phenyls as substituents give the highest SERS signal following DNA-induced aggregation. Principal component analysis (PCA) was performed on the data to show differentiation between the dye classes and highlight possible future multiplexing capabilities of the 12 investigated dyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080490 | PMC |
http://dx.doi.org/10.1039/c8ra01998c | DOI Listing |
Biosensors (Basel)
October 2024
Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA aptamers to generate a measurable fluorescent signal. However, not all DNA aptamers undergo sufficient target-specific conformational changes for significant fluorescence measurements.
View Article and Find Full Text PDFInt J Pharm
October 2024
School of Pharmacy, University of Otago, Dunedin 9016, New Zealand. Electronic address:
Conjugation of a therapeutic agent to a polymer for enhanced delivery into target cells followed by its intracellular triggered release has proved to be an effective drug delivery approach. This approach is applied to the delivery of the immune-stimulatory unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide for an anti-tumour immune response after intratumoral administration. On average four CpG-1668 molecules were covalently linked to a 40-kDa amino-functionalised dextran polymer via either a non-reversible (CpG-dextran) or an intracellular redox-responsive disulfide linkage (CpG-SS-dextran).
View Article and Find Full Text PDFBioelectrochemistry
August 2024
A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium. Electronic address:
Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (O)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer.
View Article and Find Full Text PDFJ Drug Target
June 2024
Department of Pharmaceutics, ISF College Pharmacy, Moga, India.
Aptamers, a novel type of targeted ligand used in drug delivery, have quickly gained popularity due to their high target specificity and affinity. Different aptamer-mediated drug delivery systems, such as aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalised nanoparticle systems, are currently being developed for the successful treatment of cancer based on the excellent properties of aptamers. These systems can decrease potential toxicity and enhance therapeutic efficacy by targeting the drug moiety.
View Article and Find Full Text PDFChembiochem
January 2024
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
Post-synthetic modification of nucleic acid structures with clickable functionality is a versatile tool that facilitates many emerging applications, including immune evasion, enhancements in stability, fluorescent labelling, chemical 5'-RNA-capping and the development of functional aptamers. While certain chemoenzymatic approaches for 3'-azido and alkynyl labelling are known, equivalent 5'-strategies are either inefficient, complex, or require harsh chemical conditions. Here, we present a modular and facile technology to consecutively modify DNA and RNA strands at both ends with click-modifiable functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!