Similar Publications

The measurement of phenols with graphitic carbon fiber microelectrodes and fast-scan cyclic voltammetry.

Nanotechnology

December 2024

Chemistry, American University, 4400 Massachusetts Ave NW, Washington, Washington, District of Columbia, 20016-8002, UNITED STATES.

A phenol contains a six-membered, conjugated, aromatic ring that is bound to a hydroxyl group. These molecules are important in biomedical studies, aromatic food preparation, and petroleum engineering. Traditionally, phenols have been measured with several analytical techniques such as UV-VIS spectroscopy, fluorescence, liquid chromatography, and mass spectrometry.

View Article and Find Full Text PDF

Postpolymerization modifications are valuable techniques for creating functional polymers that are challenging to synthesize directly. This study presents aliphatic polycarbonates with pendant thiol-reactive groups for disulfide formation with mercaptans. The reductive responsive nature of this reaction allows for reversible postpolymerization modifications on biodegradable scaffolds.

View Article and Find Full Text PDF

Stereoselective Synthesis of (±)-Tetraponerine-2 and -4 via the Gold(I)-Catalyzed Intramolecular Dehydrative Amination of Allylic Alcohols.

J Org Chem

December 2024

College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.

The concise and efficient total synthesis of (±)-tetraponerine-2 () and (±)-tetraponerine-4 () was achieved in 9% and 14% overall yield, respectively. The key step included the diastereoselective gold(I)-catalyzed intramolecular dehydrative amination of an allylic alcohol-tethered sulfamide to produce the 1,3-diamine moiety. The resulting olefinic side chain was then elaborated by cross-metathesis and cyclized to a five-membered pyrrolidine or a six-membered piperidine ring by intramolecular Mitsunobu -alkylation.

View Article and Find Full Text PDF
Article Synopsis
  • DFT (M06-2X) calculations reveal the mechanism of NHC-catalyzed [3 + 3] cycloaddition involving enals and aminoacrylates, starting with NHC binding to an enal and leading to a series of intermediates.
  • The critical step in the reaction is the formation of a new C-C bond in the acyl azolium intermediate, which dictates the stereoselectivity, favoring the -face addition and producing a specific -configuration.
  • The final product, dihydropyridinone, shows a calculated enantiomeric excess of 99.1%, closely matching experimental results, with enantioselectivity linked to strong interactions in the transition state.
View Article and Find Full Text PDF

The synthesis of chiral 1,1-diaryl compounds, particularly those containing a pyridine moiety, is of significant interest due to their pharmaceutical applications. Here, we report the development of a copper-catalyzed enantioselective 1,4-hydropyridylation of conjugated dienes. Utilizing 2-fluoropyridine as the electrophile, CuOAc, and the chiral ligand Tol-BINAP, we optimized reaction conditions to achieve the desired chiral 1,1-diaryl products containing both a pyridine and a cis-crotyl group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!