The electrochemical behavior of some polybenzofulvene derivatives bearing bithiophene (BT) or terthiophene (TT) side chains was investigated by cyclic voltammetry. Very interestingly, the presence of unsubstituted terminal thiophene moieties allowed poly-6-BT-BF3k and poly-6-TT-BF3k to be cross-linked by electrochemical procedures. Conductive films were obtained by electrodeposition from solutions of these polymers onto electrode surfaces through the formation of covalent cross-linking due to dimerization ( electrochemical oxidation) of the BT or TT side chains. The films showed electrochromic features and switched from yellow-orange (neutral) to green (positively charged) by switching the potential, and were stable to tenths of cycles, without degradation in the wet state in the electrolyte solution. Finally, the thin film obtained by electrodeposition of poly-6-TT-BF3k on a indium tin oxide (ITO) glass substrate showed in the neutral state a significantly red-shifted photoluminescence (PL) emission (∼40 nm red-shifted with respect to that of the corresponding film obtained by casting procedures), which was consistent with the presence of more conjugated moieties produced by the oxidative dimerization of the TT side chains. The innovative architecture and the easy preparation could lead to a broad range of applications in optoelectronics and bioelectronics for these cross-linked hybrid materials based on π-stacked polybenzofulvene backbones bearing oligothiophene side chains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078966PMC
http://dx.doi.org/10.1039/c7ra13242eDOI Listing

Publication Analysis

Top Keywords

side chains
16
polybenzofulvene derivatives
8
electrochemical
4
electrochemical optoelectronic
4
optoelectronic properties
4
properties terthiophene-
4
terthiophene- bithiophene-based
4
bithiophene-based polybenzofulvene
4
derivatives electrochemical
4
electrochemical behavior
4

Similar Publications

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Protein-protein interactions (PPI) are crucial for understanding numerous biological processes and pathogenic mechanisms. Identifying interaction sites is essential for biomedical research and targeted drug development. Compared to experimental methods, accurate computational approaches for protein-protein interaction sites (PPIS) prediction can save significant time and costs.

View Article and Find Full Text PDF

The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling.

Free Radic Biol Med

January 2025

Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.

View Article and Find Full Text PDF

Amphiphilic Polyaspartamide Derivatives with Cholesterol Introduction Enhanced Ex Vivo mRNA Transfection Efficiency to Natural Killer Cells.

Biomacromolecules

January 2025

Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!