Mechanical and water-resistant properties of rice straw fiberboard bonded with chemically-modified soy protein adhesive.

RSC Adv

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367.

Published: April 2018

In this work, rice straw and soy protein were used to make fiberboard which may replace wood fiberboard. Soy protein isolates (SPI) were modified by epoxidized oleic acid to improve the soy protein adhesive properties such as adhesion strength and water resistance. The effects of NaOH content, the addition of modified-SPI adhesives and fiberboard density on the mechanical and water-resistant properties of the rice straw fiberboards were investigated. FTIR and XRD results of modified SPI indicated the epoxidized oleic acid and soy protein reacted with each other. FTIR and SEM images of rice straw fibers showed that NaOH solution removed the wax layer through chemical etching. The results of investigating mechanical properties and water absorption illustrate that when the soy protein-based adhesives content and density and the hot pressing temperature and pressure of fiberboard are 12%, 0.8 g cm, 140 °C and 6 MPa, respectively, the panels have optimal mechanical and water-resistant performances. Moreover, the panels meet the requirements of chinese medium density fiberboard (MDF) Standard of GB/T 11718-2009. Since biological raw materials are recyclable and biomass, the fiberboard bonded with modified soy protein adhesive has no toxicity and is easily biodegradable. In addition, the rice straw burned to produce haze has been preferably utilized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080012PMC
http://dx.doi.org/10.1039/c7ra12875dDOI Listing

Publication Analysis

Top Keywords

soy protein
24
rice straw
20
mechanical water-resistant
12
protein adhesive
12
water-resistant properties
8
properties rice
8
fiberboard bonded
8
epoxidized oleic
8
oleic acid
8
fiberboard
7

Similar Publications

AozC, a zn(II)Cys transcription factor, negatively regulates salt tolerance in Aspergillus oryzae by controlling fatty acid biosynthesis.

Microb Cell Fact

January 2025

Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.

Background: In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus.

View Article and Find Full Text PDF

and are two species belonging to the Plusiinae subfamily within the Noctuidae family. Due to their morphological similarity, the identification of their larvae is difficult and time-consuming. A rapid and accurate identification of these two species is essential for their management as these species exhibit differential susceptibilities to insecticides and crops engineered to express () proteins, and a molecular tool can easily provide this differentiation.

View Article and Find Full Text PDF

Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling.

View Article and Find Full Text PDF

GmbZIP4a/b Positively Regulate Nodule Number by Affecting Cytokinin Biosynthesis in .

Int J Mol Sci

December 2024

Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.

Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants.

View Article and Find Full Text PDF

Soy protein isolate (SPI) possesses potential gelling properties, making it suitable for gel-based applications. However, the gel network stability and mechanical properties of SPI are relatively poor and can be improved through modifications or by combining it with other polymers, such as Konjac Glucomannan (KGM). Combining SPI with KGM can overcome the poor gel network stability and mechanical properties of SPI, but it reduces the water-absorbing capacity of the gel network after drying, which affects the quality characteristics of plant-based protein rehydrated foods and limits the economic feasibility of soy protein foods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!