We demonstrated hydrophobic, flexible/stretchable, and transparent electrodes made up of Ag nanowire (NW) networks passivated by a sputtered polytetrafluoroethylene (PTFE) layer to produce self-cleaning transparent thin film heaters (TFHs). Using carbon nanotubes and a PTFE mixed conducting target, we successfully sputtered a transparent PTFE layer on the Ag NW network using mid-frequency magnetron sputtering. The hydrophobic surface of the PTFE/Ag NW electrodes led to water-repelling and self-cleaning transparent Ag NW electrodes, which are beneficial for transparent TFH-based smart windows. Furthermore, hydrophobic PTFE/Ag NW electrodes coated on polyethylene terephthalate (PET) and polyurethane (PU) substrates showed outstanding flexibility and stretchability, respectively, due to the capping effect of the PTFE layer. Based on outer/inner bending and stretching test results, we demonstrated the superior mechanical properties of the PTFE/Ag NW electrode compared to a bare Ag NW electrode. Finally, we investigated the feasibility of the PTFE/Ag NW film coated on a PU substrate as a transparent and stretchable electrode for stretchable and self-cleaning transparent TFHs. The effective heat generation of the stretchable PTFE/Ag NW electrode indicates the potential for energy-efficient multi-functional PTFE/Ag NW-based TFHs attached to automobile windows.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080517PMC
http://dx.doi.org/10.1039/c8ra00880aDOI Listing

Publication Analysis

Top Keywords

ptfe layer
16
self-cleaning transparent
16
passivated sputtered
8
transparent
8
transparent thin
8
thin film
8
film heaters
8
transparent electrodes
8
ptfe/ag electrodes
8
ptfe/ag electrode
8

Similar Publications

Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO reduction. However, the operational stability of CO electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding.

View Article and Find Full Text PDF

Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).

View Article and Find Full Text PDF

Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.

Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.

View Article and Find Full Text PDF

Floatable artificial leaf to couple oxygen-tolerant CO conversion with water purification.

Nat Commun

January 2025

Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, PR China.

To enable open environment application of artificial photosynthesis, the direct utilization of environmental CO via an oxygen-tolerant reductive procedure is necessary. Herein, we introduce an in situ growth strategy for fabricating two-dimensional heterojunctions between indium porphyrin metal-organic framework (In-MOF) and single-layer graphene oxide (GO). Upon illumination, the In-MOF/GO heterostructure facilitates a tandem CO capture and photocatalytic reduction on its hydroxylated In-node, prioritizing the reduction of dilute CO even in the presence of air-level O.

View Article and Find Full Text PDF

Strategy To Enhance Interfacial Properties: Preparation of Porous Polytetrafluoroethylene Fibers and the Adsorption of Initiators/Curing Agents.

Langmuir

January 2025

State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

Polytetrafluoroethylene (PTFE) fibers exhibit high inertness and demonstrate limited interfacial bonding capabilities with other materials. To overcome this limitation, PTFE@ZnO fibers were developed by depositing the porous ZnO layer onto PTFE fibers via a hydrothermal reaction, and porous fibers were adsorbed curing agents or initiators. The interfacial shear strength (ILSS) of the composites demonstrated a significant improvement, particularly in the case of composites containing PTFE/initiator fibers, where the ILSS increased by 104.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!