We demonstrated hydrophobic, flexible/stretchable, and transparent electrodes made up of Ag nanowire (NW) networks passivated by a sputtered polytetrafluoroethylene (PTFE) layer to produce self-cleaning transparent thin film heaters (TFHs). Using carbon nanotubes and a PTFE mixed conducting target, we successfully sputtered a transparent PTFE layer on the Ag NW network using mid-frequency magnetron sputtering. The hydrophobic surface of the PTFE/Ag NW electrodes led to water-repelling and self-cleaning transparent Ag NW electrodes, which are beneficial for transparent TFH-based smart windows. Furthermore, hydrophobic PTFE/Ag NW electrodes coated on polyethylene terephthalate (PET) and polyurethane (PU) substrates showed outstanding flexibility and stretchability, respectively, due to the capping effect of the PTFE layer. Based on outer/inner bending and stretching test results, we demonstrated the superior mechanical properties of the PTFE/Ag NW electrode compared to a bare Ag NW electrode. Finally, we investigated the feasibility of the PTFE/Ag NW film coated on a PU substrate as a transparent and stretchable electrode for stretchable and self-cleaning transparent TFHs. The effective heat generation of the stretchable PTFE/Ag NW electrode indicates the potential for energy-efficient multi-functional PTFE/Ag NW-based TFHs attached to automobile windows.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080517 | PMC |
http://dx.doi.org/10.1039/c8ra00880a | DOI Listing |
Angew Chem Int Ed Engl
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO reduction. However, the operational stability of CO electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, Ohio.
Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Orthodontics, Osaka Dental University, Hirakata, Japan.
Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.
Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.
Nat Commun
January 2025
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, PR China.
To enable open environment application of artificial photosynthesis, the direct utilization of environmental CO via an oxygen-tolerant reductive procedure is necessary. Herein, we introduce an in situ growth strategy for fabricating two-dimensional heterojunctions between indium porphyrin metal-organic framework (In-MOF) and single-layer graphene oxide (GO). Upon illumination, the In-MOF/GO heterostructure facilitates a tandem CO capture and photocatalytic reduction on its hydroxylated In-node, prioritizing the reduction of dilute CO even in the presence of air-level O.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
Polytetrafluoroethylene (PTFE) fibers exhibit high inertness and demonstrate limited interfacial bonding capabilities with other materials. To overcome this limitation, PTFE@ZnO fibers were developed by depositing the porous ZnO layer onto PTFE fibers via a hydrothermal reaction, and porous fibers were adsorbed curing agents or initiators. The interfacial shear strength (ILSS) of the composites demonstrated a significant improvement, particularly in the case of composites containing PTFE/initiator fibers, where the ILSS increased by 104.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!