As a promising generation of porous micro-materials, covalent organic frameworks (COFs) have great potentials for applications in separation and adsorption. In the present study, an advanced food-safety inspection method involving COFs as the adsorbents of solid phase extraction (SPE) is proposed for sensitive and accurate determination of target hazardous substances. Typical spherical TpBD COFs with large surface area and superior chemical stability were utilized as adsorbents for the preconcentration of phenolic endocrine disruptors (PEDs), followed by high performance liquid chromatography (HPLC) analysis. The well-prepared TpBD COFs were encapsulated in SPE cartridges and applied in food research, namely, for the separation and enrichment of four target endocrine disruptors in food samples. The possible factors influencing the SPE performance including the composition of the sample solvent, sample solution pH, sample flow rate, composition of the eluent, and the volume of the eluent were investigated and optimized. Due to the porous architecture and superior surface area of spherical TpBD, the enrichment of analytes a COF-filled SPE column gave extremely low detection limits of 0.056-0.123 μg L along with a wide linear range of 0.5-100 μg L for all the analytes. Nine parallel determinations of the mixed standard with a concentration of 10 μg L produced the relative standard deviations of 2.23-3.08%, indicating the excellent repeatability of the COF-SPE assay. This study can open up a new route for the employment of COFs as efficient SPE adsorbents for the enrichment and quantification of trace/ultra-trace hazardous materials in complex food samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083371PMC
http://dx.doi.org/10.1039/c8ra04321cDOI Listing

Publication Analysis

Top Keywords

endocrine disruptors
12
covalent organic
8
organic frameworks
8
adsorbents preconcentration
8
phenolic endocrine
8
high performance
8
performance liquid
8
liquid chromatography
8
spherical tpbd
8
tpbd cofs
8

Similar Publications

The extensive use of pesticides in agriculture significantly enhances crop yields and pest control. However, it also raises concerns regarding environmental and human health impacts. Children are particularly vulnerable to health effects of pesticide exposure, especially for neurological development and reproductive health.

View Article and Find Full Text PDF

The extensive application of plasticizers has led to significant environmental issues. This study focused on the ecotoxic effects on earthworms of the traditional plasticizer di(2-ethylhexyl) phthalate (DEHP) and non-phthalate plasticizers di(ethylhexyl) terephthalate (DEHT) and acetyltributyl citrate (ATBC). At an environmentally relevant concentration (50 mg/kg), significant accumulation of ROS was observed in earthworms, with a trend of DEHP > DEHT > ATBC, inducing oxidative stress and lipid peroxidation.

View Article and Find Full Text PDF

Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases.

View Article and Find Full Text PDF

Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Embryos.

J Xenobiot

January 2025

Laboratoire de Biologie du Développement (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-Mer, France.

Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH, 50 nm) on the embryonic development of , a model ascidian species. Both chorionated and dechorionated embryos were exposed to increasing concentrations of PS-NH so morphological alterations could be assessed with a high-content analysis of the phenotypes and genotoxicity.

View Article and Find Full Text PDF

Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!