A fictitious patient, Miguel, has been diagnosed with drug-resistant epilepsy and is awaiting neurosurgery. While in the hospital, Miguel agrees to participate in a research study in which depth electrodes are used to record neuronal activity in response to a range of stimuli. Interestingly, a neuron is identified that seems to respond selectively to video clips of the animated satirical TV show The Simpsons. Students are challenged to make observations, formulate and revise hypotheses, and interpret data, excerpted from an authentic dataset derived from actual patients in a 2008 paper. Students then consider implications for these data, evaluate their ability to generalize to non-human (rodent) models, and speculate about future directions for this research. Adaptations of this case have been implemented in introductory and advanced neuroscience courses. Students responded positively to the case, and reported gains in science competence and identity, particularly in the introductory courses. Suggestions for implementation and adaptation of this experience are offered. While this case has been implemented in undergraduate neuroscience courses, it might also be used in physiology, psychology, biology, research methods, or clinical courses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053423PMC

Publication Analysis

Top Keywords

neuroscience courses
12
introductory advanced
8
advanced neuroscience
8
case implemented
8
courses
5
simpsons neuron
4
case
4
neuron case
4
case study
4
study exploring
4

Similar Publications

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.

Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.

View Article and Find Full Text PDF

IntroductionTraditional obesity measures including body mass index, waist circumference, waist-to-hip ratio, and waist-to-height ratio have limitations. The primary objective of this study was to identify and review the validity of non-traditional obesity measures, using measures of total body fat as the reference standard, that have been used across multiple life stages. MethodsWe conducted a systematic review and searched MEDLINE, Embase, and PsycINFO.

View Article and Find Full Text PDF

: Migraine is a common neurological disorder with highly variable characteristics. While genome-wide association studies have identified genetic risk factors that implicate underlying pathways, the influence of genetic susceptibility on disease characteristics or treatment response is incompletely understood. We examined the relationships between a previously developed standardized integrative migraine polygenic genetic risk score (PRS) and migraine characteristics in a real-world, treated patient cohort.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system. The disease can manifest and progress with both physical and cognitive symptoms, affecting the patient's daily activities. The aim of our study was to investigate the correlation between functional status, cognitive functions, and neurofilament light chain levels in plasma in MS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!