Course-based undergraduate research experiences (CUREs) are increasingly common approaches to provide students with authentic laboratory experiences. Typically, CUREs are semester-long, in-person experiences that can be financially and time prohibitive for some institutions, faculty, and students. Here, we developed a short-duration, fully-online CURE, the Spine Lab, to provide an opportunity for students to conduct original research. In this CURE, we focused on synaptic spines in the mammalian brain; synapses are the unit structure that functions in rapid information processing. The students worked together in pairs and as a class to analyze cortical neuron spine density and structural morphology changes between a mouse line with learning impairments (forebrain-specific β-catenin knockouts [β-cat cKOs]) and control (Ctl) littermates. The students showed their results in an online poster presentation. Their findings show that spine density is significantly reduced, while spine structural maturation is unaltered in the β-cat cKO. Defining pathophysiological changes caused by CTNNB1/β-catenin loss-of-function provides important insights relevant to human disorders caused by disruptive mutations in this gene. To assess the benefits of this CURE, students completed a pre- and post-test assessment including a content quiz, STEM identity survey, and a standardized CURE survey. Participation in the Spine Lab correlated with improved content and STEM identity scores, and decreased negative attitudes about science. Moreover, direct comparison to the CURE database reveals that the Spine Lab produces comparable benefits to traditional CUREs. This work as a whole suggests that short-duration, fully-online CUREs can provide benefit to students and could be an inclusive tool to improve student outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053429 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!