As an environmentally friendly and low-cost adsorbent, biochar has great potential in wastewater treatment. This study investigated biochar derived from L. leaves (PLB) activated by KOH in terms of its capacity and reusability to adsorb -nitrophenol (PNP). PLB had a large specific surface area and total pore volume, and exhibits good PNP removal with a maximal adsorption capacity of 622.73 mg g at 298 K. Batch experiments showed that PLB had a high PNP adsorption capacity under acidic conditions. Experimental results were well described by the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. The thermodynamic study showed that PNP adsorption was a spontaneously exothermic process, and increasing temperature was not conducive to adsorption. In addition, PNP adsorption was mainly attributed to hydrophobic interaction. The regeneration experiment showed that PLB had good reusability. After the fifth regeneration, the adsorption capacity of PLB still reached 557.05 mg g. The deactivation of oxygen-containing functional groups and pore blockage were the causes for the decrease in adsorption capacity of the recycled PLB. Moreover, the biochar showed good adsorption efficiency and reusability, thereby suggesting its potential to serve as an efficient PNP adsorbent for wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076068PMC
http://dx.doi.org/10.1039/c9ra07943bDOI Listing

Publication Analysis

Top Keywords

adsorption capacity
16
pnp adsorption
12
adsorption
11
wastewater treatment
8
plb
6
pnp
6
capacity
5
adsorption regeneration
4
regeneration leaf-based
4
biochar
4

Similar Publications

Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.

View Article and Find Full Text PDF

Removal of Cr(VI) from aqueous solutions by activated carbon and its composite with PWO: A spectroscopic study to reveal adsorption mechanism.

Heliyon

January 2025

Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.

Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.

View Article and Find Full Text PDF

This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.

View Article and Find Full Text PDF

The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.

View Article and Find Full Text PDF

The nitrogen-rich metal-organic framework (MOF) , featuring a melamine (MA) functional group, enables efficient one-step CH purification and methanol-to-olefins (MTO) product separation. At 298 K, its adsorption capacity follows the order CH > CH > CH > CH. Breakthrough experiments showed that produced pure CH from C mixtures with a productivity of 22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!