Proteins are very effective capping agents to synthesize biocompatible metal nanomaterials . Reduction of metal salts in the presence of a protein generates very different types of nanomaterials (nanoparticles or nanoclusters) at different pH. Can a simple pH jump trigger a transformation between the nanomaterials? This has been realized through the conversion of silver nanoparticles (AgNPs) into highly fluorescent silver nanoclusters (AgNCs) a pH-induced activation with bovine serum albumin (BSA) capping. The BSA-capped AgNPs, stable at neutral pH, undergo rapid dissolution upon a pH jump to 11.5, followed by the generation of blue-emitting AgNCs under prolonged incubation (∼9 days). The AgNPs can be transformed quickly (within 1 hour) into red-emitting AgNCs by adding sodium borohydride during the dissolution period. The BSA-capping exerts both oxidizing and reducing properties in the basic solution; it first oxidizes AgNPs into Ag and then reduces the Ag ions into AgNCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076107 | PMC |
http://dx.doi.org/10.1039/c9ra06774d | DOI Listing |
Toxicol Rep
June 2025
Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt.
Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects.
View Article and Find Full Text PDFFront Microbiol
January 2025
Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center, Animal Health Research Institute, Zagazig, Egypt.
Background: is a significant nosocomial pathogen that has developed resistance to multiple antibiotics, often forming biofilms that enhance its virulence. This study investigated the efficacy of a novel nanoformulation, AgNPs@chitosan-NaF, in combating biofilms.
Methods: Antimicrobial susceptibility testing was performed to assess the antibiotic resistance profile of isolates.
J Phys Chem Lett
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Hydrogel dressings with good biocompatibility and extracellular matrix mimetic structure are important for the treatment of skin wounds. In this study, antimicrobial silver nanoparticles (Ag NPs) loaded with konjac glucomannan and silk fibroin (KGM/SF) composite hydrogel were used as a dressing for wound healing. The uniform distribution of Ag NPs on the surface of the hydrogels imparts excellent antibacterial properties to KGM/SF composite hydrogels.
View Article and Find Full Text PDFNanotechnology
January 2025
Guangdong Detection Center for Microbiology, 100 Xianlie Zhong Road, Guangzhou, 510070, CHINA.
In the published article "Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology 18 (2007) 055605", the figure caption of Figure 8 has an error in immersion time, and the correct caption is given in this Corrigendum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!