Aromatic acids, which are generated from numerous anthropogenic emissions and secondary transformations, have been considered to play a crucial role in new particle formation. In this study, we performed theoretical calculations at the PW91PW91/6-311++G(3df,3pd) level to investigate the interaction between typical aromatic acids namely benzoic acid (BA), phenylacetic acid (PAA), phthalic acid (PA), isophthalic acid (mPA), and terephthalic acid (PTA) and common atmospheric nucleation precursors namely sulfuric acid (SA), water (HO), ammonia (NH), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). The geometric analysis, Gibbs free energy analysis, OH/NH-stretching vibrational frequency calculation, and atoms in molecules (AIM) analysis were conducted to determine the interactions in the complexes. The heterodimers formed a six to eight membered ring through four types of hydrogen bond, and the bond strength could be ranked in descending order: SO-H⋯O > O-H⋯O/N > N-H⋯O. The BA/PAA/mPA/PTA-SA complexes had the lowest Gibbs free energy values. PA was more likely to interact with NH or amines rather than SA due to an intra-molecular hydrogen bond. Additionally, the aromatic acids have similar ability to interact with SA and NH as monocarboxylic/dicarboxylic acid. The formation potential of the heterodimers from aromatic acids with common nucleation precursors in ambient atmosphere was investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075000 | PMC |
http://dx.doi.org/10.1039/c9ra07398a | DOI Listing |
J Photochem Photobiol B
January 2025
Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:
Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Marine Toxicology, Institute of Marine Research, Bergen, Norway.
Polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants with a widespread presence in diverse environmental contexts. Transformation processes of PAHs via degradation and biotransformation have parallels in humans, animals, plants, fungi, and bacteria. Mapping the transformation products of PAHs is therefore crucial for assessing their toxicological impact and developing effective monitoring strategies.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada. Electronic address:
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, San Francisco, San Francisco, CA, USA.
Background: An optimized 6 amino acid peptide (NLSYYT; herein YΦ) derived from the C-terminus of h19S proteasome activator Rpt5 has been shown to activate the 20S proteasome and promote tau degradation. Further analysis of this peptide has identified the highly conserved leucine in position 5 (P5) as a key part of the 20S activation mechanism to drive degradation of tau monomers in the absence of proteasome activator complexes.
Method: Recombinant peptides were used to identify key amino acids required for binding and activating the h20S proteasome.
Background: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!