Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Correlative Raman-Voltage Microscopy Revealing the Localized Structure-Stress Relationship in Silicon Solar Cells.

ACS Nano

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.

Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

Hole transport layer (HTL)-free carbon-based perovskite solar cells (C-PSCs) own outstanding potential for commercial applications due to their attractive advantages of low cost and superior stability. However, the abundant defects and mismatched energy levels at the interface of the perovskite/carbon electrode severely limit the device efficiency and stability. Constructing a 2D layer on the surface of 3D perovskite films to form 2D/3D heterojunctions has been demonstrated to be an effective method of passivating surface defects and optimizing the energy level alignment in almost all kinds of PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!