Similar Publications

Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles.

Molecules

December 2024

Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.

Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. As related to their favorable electronic and structural interactions, the catalytic performances of PdCu bimetallic nanoparticles may be superior to monometallic species.

View Article and Find Full Text PDF

The removal of organic pollutants from water is significantly important as they have harmful effects on the ecosystem. Heterogeneous photocatalysis is a potential technique for the removal of organic pollutants from the wastewater. In this article, zinc oxide (ZnO) and samarium oxide (SmO) nanoparticles and ZnO-SmO nanocomposite (ZS) were synthesized by the co-precipitation method.

View Article and Find Full Text PDF

Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped BiO-based NPs catalyst.

J Environ Manage

January 2025

Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico. Electronic address:

The chemical co-precipitation method was used to synthesize a variety of pure BiO and substituted BiCoCdO NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics.

View Article and Find Full Text PDF

Structure-activity relationship of small organic molecule functionalized Bi-based heterogeneous catalysts for electrocatalytic reduction of CO to formate.

J Colloid Interface Sci

January 2025

Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:

Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.

View Article and Find Full Text PDF

While single-atom catalysts (SACs) have been extensively investigated as a high-atom-efficiency heterogeneous catalyst for peroxymonosulfate (PMS) oxidation reaction, the stable constructing and activation efficacy of the reaction sites remains less clarified. Herein, we employed gelatin as a N,O-bidentate ligand for Co (II) to form for a N-doped carbon precursor, while introducing NaCl as a template agent to induce the adoption of a Co-N conformation and disorganize the Co-O moiety. This approach facilitates uniform spatial isolation and atomic-level dispersion of Co atoms within the aerogel, effectively inhibiting the aggregation of Co during synthesis and enabling precise and controllable preparation of Co single-atom catalysts (SACs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!