The interfaces in 2D hybrids of graphene and h-BN provide interesting possibilities of adsorbing and manipulating atomic and molecular entities. In this paper, with the aid of density functional theory, we demonstrate the adsorption characteristics of DNA nucleobases at different interfaces of 2D hybrid nanoflakes of graphene and h-BN. The interfaces provide stronger binding to the nucleobases in comparison to pure graphene and h-BN nanoflakes. It is also revealed that the individual dipole moments of the nucleobases and nanoflakes dictate the orientation of the nucleobases at the interfaces of the hybrid structures. The results of our study point towards a possible route to selectively control the orientation of individual molecules in biosensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078367 | PMC |
http://dx.doi.org/10.1039/c7ra11664k | DOI Listing |
Nanotechnology
January 2025
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, Uppsala, SE-751 20, SWEDEN.
The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D).
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
The ZrO-embedded carboxy-functionalized -BN composite, combined with graphene oxide (GO), formed a novel BN-COOH@ZrO/GO composite. Structural characterization through IR, Raman spectroscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy supported the successful preparation of the composite, while scanning electron microscopy and transmission electron microscopy revealed its surface morphology and the presence of component materials. UV-vis spectroscopy (solid state) further supported these findings.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.
Heterogeneous integration of emerging two-dimensional (2D) materials with mature three-dimensional (3D) silicon-based semiconductor technology presents a promising approach for the future development of energy-efficient, function-rich nanoelectronic devices. In this study, we designed a mixed-dimensional junction structure in which a 2D monolayer (e.g.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!