Laser composite surfacing (LCS) is a photon driven manufacturing technology that can be utilized for depositing hybrid metal matrix composite coatings (HMMC) on softer Ti/Al/Mg alloys to enhance their tribo-mechanical properties. LCS offers the advantages of higher directionality, localized microstructural refinement and higher metallurgical bonding between coating and substrate. The current research presents the tribo-mechanical evaluation and characterization of solid lubricant based Ni-WC coatings deposited by LCS on Al-Si piston alloy by varying the concentration of graphite between 5-to-15-weight percentage. The tribological behavior of LCS samples was investigated using a ball-on-plate tribometer. Results indicate that the surface hardness, wear rate and friction coefficient of the Al-Si hypereutectic piston alloy were improved after LCS of graphite based HMMC coatings. The maximum surface hardness of 781 was acquired for the Ni-WC coating containing 5 wt% graphite. The friction coefficient of Al-Si under dry sliding conditions was reduced from 0.47 to 0.21. The reduction in the friction coefficient was attributed to the formation of a shearable transfer layer, which prevented delamination and reduced adhesion, abrasion and fatigue cracking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078359PMC
http://dx.doi.org/10.1039/c7ra08191jDOI Listing

Publication Analysis

Top Keywords

piston alloy
12
friction coefficient
12
laser composite
8
composite surfacing
8
surface hardness
8
coefficient al-si
8
lcs
5
mechanical tribological
4
tribological performance
4
performance hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!