To date, the combinational cancer therapy of anticancer and antiangiogenic agents represents a promising strategy to improve antitumor outcomes in clinics. However, combination therapy with drugs having distinct properties, such as solubility, limits the likelihood of simultaneous delivery. In our study, we aimed to develop a codelivery nanoparticulate system of hydrophilic doxorubicin (DOX) and hydrophobic itraconazole (ITZ) using liposomes coated with Pluronic® P123 (ITZ/DOX-PLip). The prepared ITZ/DOX-PLip exhibited a unimodal size distribution and high loading efficiency with sustained release profiles. Furthermore, cytotoxicity against 4T1 murine breast cancer cells and cellular uptake results revealed that the inhibitory effect of ITZ/DOX-Plip on tumor growth was superior to that of free DOX or DOX-loaded liposome (DOX-Lip), which was primarily attributed to the significantly higher intercellular DOX content. Cytotoxicity against HUVEC and wound healing tests confirmed that ITZ and ITZ formulations could inhibit the growth and migration of endothelial cells. In addition, in xenograft 4T1 bearing BALB/c mice, biodistribution experiments revealed that higher drug accumulation in tumors and decreased distribution in heart were observed for ITZ/DOX-PLip as compared to free DOX. Remarkably, ITZ/DOX-PLip significantly reduced tumor volume, tumor weight, liver metastasis and microvessel density in comparison with the same dose of ITZ injection or DOX-Lip. Overall, this Pluronic® P123 modified liposome-based codelivery system represents a promising nano-platform for combination therapy in cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081748PMC
http://dx.doi.org/10.1039/c8ra03787fDOI Listing

Publication Analysis

Top Keywords

pluronic® p123
12
represents promising
8
combination therapy
8
free dox
8
itz/dox-plip
5
co-delivery doxorubicin
4
doxorubicin itraconazole
4
itraconazole pluronic®
4
p123 coated
4
coated liposomes
4

Similar Publications

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF

An In Situ Oxidative Polymerization Method to Synthesize Mesoporous Polypyrrole/MnO Composites for Supercapacitors.

Molecules

December 2024

Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Manganese dioxide (MnO) shows great potential in the field of electrochemical performance. But its poor conductivity, easy dissolution in electrolytes and undesirable ionic accessibility hinder its application. The construction of mesoporous polypyrrole/manganese dioxide (PPy/MnO) composites can effectively alleviate these problems.

View Article and Find Full Text PDF

This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.

View Article and Find Full Text PDF

The treatment of effluents from the pharmaceutical industry currently remains a major challenge due to their impact on the environment and public health along with the cost of treatments. Considering these issues, our work focused on the development of materials with effective adsorption properties to treat industrial effluents based on locally available and inexpensive clays and zeolite. Local Algerian kaolin (Djebel Debbagh), palygorskite (Ghoufi) and zeolite (Tinbdar) were treated thermally and chemically prior to synthesis into mesoporous materials of hexagonal structure using pluronic P123 as surfactant.

View Article and Find Full Text PDF

The present work focuses on the photophysical behavior of meso-N-butylcarbazole-substituted BODIPY (CBZ-BDP) in different organized media towards exploring the possible use of the dye as a molecular sensor and imaging agent. The molecule shows an appreciable change in absorption and emission spectra at 75% water-acetonitrile mixture compared to pure acetonitrile. In water-acetonitrile mixture, it displays aggregate-induced emission (AIE) bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!