Nafion film transport properties in a low-Pt PEM fuel cell: impedance spectroscopy study.

RSC Adv

Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-14: Electrochemical Process Engineering D-52425 Jülich Germany

Published: November 2019

Unexpected over-linear transport loss in low-Pt PEM fuel cells has been a subject of numerous studies and discussions in literature. Most of the authors agree that these losses are due to oxygen transport in the Nafion film covering Pt/C agglomerates in the cathode catalyst layer (CCL). We develop a model for PEM fuel cell impedance, which takes into account oxygen transport through the film. The model is fitted to experimental impedance spectra of a low-Pt PEM fuel cell. Fitting gives the film thickness in the range of 10 to 13 nm, and the film transport resistivity decreasing from 1.2 s cm to 0.2 s cm as the cell current density increases from 50 to 800 mA cm. Fitting returns low value of the through-plane oxygen diffusivity in the CCL, indicating that the low-Pt electrode is partially flooded.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075977PMC
http://dx.doi.org/10.1039/c9ra07794dDOI Listing

Publication Analysis

Top Keywords

pem fuel
16
low-pt pem
12
fuel cell
12
nafion film
8
film transport
8
cell impedance
8
oxygen transport
8
transport
5
transport properties
4
low-pt
4

Similar Publications

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Article Synopsis
  • Low-temperature proton exchange membrane fuel cells (PEMFCs) need very pure hydrogen gas because they are highly sensitive to carbon monoxide (CO) contamination.
  • A surface modification technique was developed, applying a 0.5-0.91 nm amorphous carbon nitride layer on PtRu/C substrates, improving hydrogen transport while blocking CO diffusion.
  • This modification significantly reduces CO adsorption, maintaining stable catalyst operation for over 20 hours even with high CO levels (1000 ppm), and allows stable performance in PEMFCs with CO concentrations up to 10 ppm, surpassing the standard limit of 0.2 ppm.
View Article and Find Full Text PDF

Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.

View Article and Find Full Text PDF

Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations.

View Article and Find Full Text PDF

Simulation and experimental study of local high frequency resistance distribution in proton exchange membrane fuel cells under steady and dynamic conditions.

Heliyon

December 2024

Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.

Proton-exchange membrane (PEM) dry-wet variation during PEM fuel cell (PEMFC) operation markedly affects PEMFC lifespan. Therefore, deeper insights into the mechanical degradation mechanism of PEM require analysis of the membrane dry-wet change process. The stress changes caused by PEM dry-wet variations may induce mechanical failure.

View Article and Find Full Text PDF

In this research, enhanced versions of the Artificial Hummingbird Algorithm are used to accurately identify unknown parameters in Proton Exchange Membrane Fuel Cell (PEMFC) models. In particular, we propose a multi strategy variant, the Lévy Chaotic Artificial Hummingbird Algorithm (LCAHA), which combines sinusoidal chaotic mapping, Lévy flights and a new cross update foraging strategy. The combination of this method with PEMFC parameters results in a significantly improved performance compared to traditional methods, such as Particle Swarm Optimization (PSO), Differential Evolution (DE), Grey Wolf Optimizer (GWO), and Sparrow Search Algorithm (SSA), which we use as baselines to validate PEMFC parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!