A novel multiscale hydrothermal carbon layer (MHTCL) for carbon fiber (CF) surface modification was developed. The MHTCL is a multiscale high-disorder amorphous carbon coating with a colored appearance, abundant functional groups, multiscale roughness, a large specific surface area, a high surface energy, and good wetting ability. The O/C atom ratios of the MHTCL-modified CF were in the range of 0.17-0.23, and the functional groups were mainly C-O and C[double bond, length as m-dash]O groups. During the low-concentration glucose hydrothermal treatment with the carbon fibers (CFs), the glucose generates furan derivative intermediates, which adsorb on the surface of the CFs and carbonize continuously, finally forming the MHTCL on the CFs. The fracture and rupture of the MHTCL during the forming process produce new nucleation centers on the CF surface, which result in abundant multiscale irregular particles. The MHTCL is a facile method for the modification of CFs. The fabrication of the CF composites demonstrated that the MHTCL obviously increases the interlaminar shear strength of the CF/polyimide composite and the interfacial interaction of the CF and polyetheretherketone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081589 | PMC |
http://dx.doi.org/10.1039/c8ra04064h | DOI Listing |
Food Res Int
January 2025
State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China. Electronic address:
Hydrothermal treatment is a physical modification technology to alter starch structures for the production of resistant starch (RS). However, the underlying regulation mechanism of the multiscale structure and digestive properties of starch by dual hydrothermal synergistic treatment remains unclear. To solve this problem, A- and B-type wheat starch granules (AWS and BWS) were separated and subjected to toughening and heat-moisture synergistic treatment (THT) with various moisture content (10 %, 15 %, 20 %, 25 %).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic.
Bacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFeO (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces.
View Article and Find Full Text PDFFood Chem
March 2025
Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:
Mung bean hull polyphenols (MBPs) have the potential to retard starch digestion by altering its multi-scale structures. However, the regulatory mechanism and the key structural characteristics that contribute to digestion resistance remain unclear. In this study, MBPs were non-covalently interacted with wheat starch (WS) under hydrothermal treatments.
View Article and Find Full Text PDFCarbohydr Polym
February 2025
Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China. Electronic address:
Understanding the application-related features of sweet potato starch (SPS) is necessary for its utilization, which remains limited. Here, seven starches isolated from different sweet potato varieties (HA, SS, YSA, YSB, YSC, YSD, and YSE) were used. It was confirmed that the multi-scale structure possesses significant effects upon the application-related features of SPS.
View Article and Find Full Text PDFNat Commun
September 2024
Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
A deep understanding of how the host matrix influences the afterglow properties of molecule dopants is crucial for designing advanced afterglow materials. Despite its appeal, the impact of defects on the afterglow performance in molecule-doped SiO matrices has remained largely unexplored. Herein, we detail the synthesis of monodisperse SiO microparticles by hydrothermally doping molecules, such as 4-phenylpyridine, 4,4'-bipyridine, and 1,4-bis(pyrid-4-yl)benzene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!