The dielectric relaxation and thermally assisted a.c. conduction play an important role in understanding the conduction mechanism in chalcogenide glasses. These two phenomena are often the deciding factors of the suitability of chalcogenide materials for particular device applications. Dielectric relaxation studies are important to understand the nature and origin of dielectric losses, which, in effect, may be useful in the determination of structure and defects in solids. The study of thermally assisted a.c. conduction can be used as a tool to understand the nature of defect states and the estimation of their density of defect states. In this paper, therefore, we have studied the metal-induced effects of cadmium (Cd), indium (In) and antimony (Sb) on dielectric relaxation and thermally activated a.c. conduction in ternary SeTeSn glass. The density of charged defect states in quaternary SeTeSnM alloys is found to vary with the electro-negativity difference ( - ) of the foreign element M and Te. Further analysis shows that the increasing sequence of the density of charged defects is explained in terms of variation in the lone-pair electrons after the incorporation of Cd, In and Sb.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082583 | PMC |
http://dx.doi.org/10.1039/c8ra04214d | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
China Building Materials Academy, Beijing 100024, China.
xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China.
The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!