The genus is one of the most popular plants consumed and cultivated worldwide, containing approximately 50 000 varieties of pepper. Due to its wide biodiversity, the chemical composition within the genus also presents a great variability. Its major applications are in food and pharmacological industry, as pepper presents a chemical composition rich in capsaicinoids, carotenoids, flavonoids and volatile compounds which is attributed to the ability of the fruit to remove insipidity, produce aromas and act against oxidative diseases. Due the existence of several cultivars there is a huge intraspecific chemical variability within each species, which can be considered as an obstacle when selecting and cultivating a species to be applied as a natural product source for a specific objective. The usage of pepper-based products in different industrial areas requires pre-established ranges of chemical compounds, such as capsaicinoids, which in high concentration are toxic when consumed by humans. Applying a pepper with a chemical profile closely related to the concentration that is required after industrial processing can improve efficacy and effectiveness of the process. An insight into the chemical characteristics of major secondary bioactive compounds within , the factors that affect their concentration and their chemosystematic implication are reported and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082723 | PMC |
http://dx.doi.org/10.1039/c8ra02067a | DOI Listing |
Elife
December 2024
Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.
We present a six-step cascade that converts 1,3-distyrylbenzenes (-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, ,-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
With the aging global population, the incidence of osteoporosis (OP) is increasing, putting more individuals at risk. Since postmenopausal osteoporosis (PMOP) often remains asymptomatic until a fracture occurs, making the early clinical diagnosis of PMOP particularly challenging. In this work, the AuNPs-anchored hierarchical porous ZrO microspheres (Au/HPZOMs) is designed to assist laser desorption/ionization mass spectrometry (LDI-MS) for the requirement of serum metabolic fingerprints of PMOP, postmenopausal osteopenia (PMON), and healthy controls (HC) and realize the early diagnosis and surveillance of PMOP.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2024
Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control.
View Article and Find Full Text PDFChemSusChem
December 2024
Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!