Insight into the capacity fading of layered lithium-rich oxides and its suppression a film-forming electrolyte additive.

RSC Adv

Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Key Lab. of ETESPG (GHEI), Innovative Platform for ITBMD (Guangzhou Municipality), School of Chemistry and Environment, South China Normal University Guangzhou 510006 China

Published: July 2018

Similar Publications

Terminally fluorinated ether 5FDEE shows exceptional compatibility with LiPF, enabling high-performance Li-metal batteries. Li‖NMC811 cells with a 1 M LiPF in 5FDEE : FEC (9 : 1 v/v) electrolyte demonstrate remarkable cycling stability with an average coulombic efficiency exceeding 99.9% and no capacity fading over 550 cycles at 2.

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode-electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.

View Article and Find Full Text PDF

On Security Performance of SWIPT Multi-User Jamming Based on Mixed RF/FSO Systems with Untrusted Relay.

Sensors (Basel)

December 2024

Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China.

This paper presents research on the security performance of a multi-user interference-based mixed RF/FSO system based on SWIPT untrusted relay. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga (M) turbulence, respectively. Multiple users transmit messages to the destination with the help of multiple cooperating relays, one of which may become an untrusted relay as an insider attacker.

View Article and Find Full Text PDF

Inner Helmholtz layer control through co-solvent strategies for high-performance copper hexacyanoferrate//zinc battery.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!