heating first and then cooling, binary ionic liquid (IL) mixture of -methyl-2-pyrrolidonium methylsulfonate ([HNMP][CHSO]) and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) could form a liquid at room temperature. The glass-transition temperature ( ) characterized by DSC depends on its composition with being as low as -63 °C. The physicochemical properties of the binary IL mixtures also vary with the composition. With the increase of the mole fraction of [Bmim]Cl, the hydrogen-bond accepting ability () of the binary IL mixture increases, but the hydrogen-bond donating ability () deceases. In this binary IL mixture, fructose could be effectively converted into 5-hydroxymethylfurfural (HMF) at room temperature. The HMF yields at a given time are found to be well correlated with the physicochemical properties of the binary mixture, especially the and values. Under specified conditions, the present IL mixture as medium for fructose dehydration into HMF is comparable to the medium formed by ILs and alcohol, where the alcohols have negative effect on the HMF formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080599 | PMC |
http://dx.doi.org/10.1039/c8ra03604g | DOI Listing |
Chemistry
January 2025
Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.
View Article and Find Full Text PDFPharmaceutics
January 2025
Programa de Posgrado en Odontología, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica.
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.
Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!