Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers.

RSC Adv

State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China

Published: February 2018

Zinc oxide nanoparticles (NPs) are very promising in replacing the phenyl-C-butyric acid methyl ester (PCBM) as electron-transporting materials due to the high carrier mobilities, superior stability, low cost and solution processability at low temperatures. The perovskite/ZnO NPs heterojunction has also demonstrated much better stability than perovskite/PCBM, however it shows lower power conversion efficiency (PCE) compared to the state-of-art devices based on perovskite/PCBM heterojunction. Here, we demonstrated that the insufficient charge transfer from methylammonium lead iodide (MAPbI) to ZnO NPs and significant interface trap-states lead to the poor performance and severe hysteresis of PSC with MAPbI/ZnO NPs heterojunction. When PCBM/ZnO NPs bilayer electron transporting layers (ETLs) were used with a device structure of ITO/poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA)/MAPbI/PCBM/ZnO NPs/Al, which can combine the advantages of efficient charge transfer from MAPbI to PCBM and excellent blocking ability of ZnO NPs against oxygen, water and electrodes, highly efficient PSCs with PCE as high as 17.2% can be achieved with decent stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078191PMC
http://dx.doi.org/10.1039/c8ra00248gDOI Listing

Publication Analysis

Top Keywords

nps heterojunction
8
heterojunction demonstrated
8
charge transfer
8
zno nps
8
nps
6
improved performance
4
stability
4
performance stability
4
stability perovskite
4
perovskite solar
4

Similar Publications

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

An ultra-sensitive photoelectrochemical (PEC) biosensor for amyloid-beta 40 (Aβ40), a biomarker for Alzheimer's disease (AD), was developed using g-C₃N₄ modified with gold nanoparticles (Au NPs) to form Au-C₃N₄. This was further combined with TiO₂ to create a tightly bonded TiO₂/Au-C₃N₄ heterojunction, leading to a highly responsive photocatalytic process. Furthermore, the incorporation of noble metal Au NPs not only enhances photocurrent generation but also securely immobilizes the aptamer through Au-S bonds, providing additional surface binding sites.

View Article and Find Full Text PDF

Visible Light-Driven Photocatalysis and Antibacterial Performance of a Cu-TiO Nanocomposite.

ACS Omega

November 2024

Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, 95070560 Caxias do Sul, Rio Grande do Sul, Brazil.

A Cu-TiO nanomaterial with unique antibacterial and photocatalytic properties is introduced in this study. Cu-TiO nanocomposites were obtained using an adapted direct current magnetron sputtering apparatus, where TiO anatase nanoparticles (NPs) were used as the substrates and copper as the sputtering target. The obtained powder was characterized by physical and chemical methods.

View Article and Find Full Text PDF

Dual-mode detection of human immunoglobulin via copper oxide nanozyme catalysis fluorescent species generation and photoelectrochemical alteration in ZnInS/SnO-based system.

Anal Chim Acta

January 2025

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:

Human immunoglobulin (HIgG) has gained recognition as a crucial biomarker diagnosing and treating various diseases, particularly in identifying elevated serum levels in conditions like measles and pneumococcal disease. Traditional detection methods, however, are often hindered by inefficiencies, high costs, and potential inaccuracies, underscoring the urgent need for more sensitive, efficient, accurate, and self-calibration methods for HIgG. Here, a novel ZnInS/SnO composites was synthesized, featuring uniformly dispersed SnO nanoparticles on the flower-like ZnInS structure, resulting in a type II heterojunction that promotes the separation and transfer of photogenerated carriers.

View Article and Find Full Text PDF

The aim of this study was to investigate the photocatalytic mineralization and degradation of Diclofenac (DCF) using Mn-WO/LED in a photoreactor setup. The study analyzed the impact of operational variables, such as the initial concentration of DCF, pH level, reaction time, and catalyst dosage, on the degradation of DCF in the Mn-WO/LED process. The characteristics of Mn-WO nanoparticles (NPs) were analyzed using a variety of techniques, including BET, TEM, XRD, TGA, FTIR, and FESEM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!