Tumor spheroids are multicellular, three-dimensional (3D) cell culture models closely mimicking the microenvironments of human tumors , thereby providing enhanced predictability, clinical relevancy of drug efficacy and the mechanism of action. Conventional confocal microscopic imaging remains inappropriate for immunohistological analysis due to current technical limits in immunostaining using antibodies and imaging cells grown in 3D multicellular contexts. Preparation of microsections of these spheroids represents a best alternative, yet their sub-millimeter size and fragility make it less practical for high-throughput screening. To address these problems, we developed a pitch-tunable 5 × 5 mini-pillar array chip for culturing and sectioning tumor spheroids in a high throughput manner. Tumor spheroids were 3D cultured in an alginate matrix using a twenty-five mini-pillar array which aligns to a 96-well. At least a few tens of spheroids per pillar were cultured and as many as 25 different treatment conditions per chip were evaluated, which indicated the high throughput manner of the 5 × 5 pillar array chip. The twenty-five mini-pillars were then rearranged to a transferring pitch so that spheroid-containing gel caps from all pillars can be embedded into a specimen block. Tissue array sections were then prepared and stained for immunohistological examination. The utility of this pitch-tunable pillar array was demonstrated by evaluating drug distribution and expression levels of several proteins following drug treatment in 3D tumor spheroids. Overall, our mini-pillar array provides a novel platform that can be useful for culturing tumor spheroids as well as for immunohistological analysis in a multiplexed and high throughput manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077751PMC
http://dx.doi.org/10.1039/c7ra09090kDOI Listing

Publication Analysis

Top Keywords

tumor spheroids
24
immunohistological analysis
12
mini-pillar array
12
high throughput
12
throughput manner
12
pitch-tunable pillar
8
spheroids
8
array chip
8
pillar array
8
tumor
6

Similar Publications

3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink.

Adv Healthc Mater

January 2025

Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany.

Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro.

View Article and Find Full Text PDF

Developing novel Lin28 inhibitors by computer aided drug design.

Cell Death Discov

January 2025

The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.

Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.

View Article and Find Full Text PDF

Cancer, one of the world's deadliest diseases, is expected to claim an estimated 16 million lives by 2040. Three-dimensional (3D) models of cancer have become invaluable tools for the study of tumor biology and the development of new therapies. The tumor microenvironment (TME) is a determinant of tumor progression and has implications for clinical therapies.

View Article and Find Full Text PDF

Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.

Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.

View Article and Find Full Text PDF

A Two-Step Protocol for Isolation and Maintenance of Lung Cancer Primary 3D Cultures.

Cancers (Basel)

December 2024

Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.

Background/objectives: Despite the introduction of innovative therapeutics, lung cancer is still the leading cause of cancer-related death. For this reason, lung cancer still requires deep characterization to identify cellular and molecular targets that can be used to develop novel therapeutic strategies. Three-dimensional cellular models, including patient-derived organoids (PDOs), represent useful tools to study lung cancer biology and may be employed in the future as predictive tools in therapeutic decisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!