We report a simple, selective and cost effective method for the qualitative and quantitative determination of thymine in a DNA standard and urine samples using gold nanoparticles (AuNPs) as a label-free colorimetric biochemical sensor. The mechanism for the detection of thymine is demonstrated the color change of the AuNPs from pink to blue, followed by the shift of the localized surface plasmon resonance (LSPR) absorption band to a higher wavelength with the introduction of an analyte. The selective detection of thymine was experimentally verified by performing a control experiment with nucleobases, other biomolecules, metal ions and anions. In addition, the computation density functional theory (DFT) and time dependent density functional theory (TD-DFT) using the Gaussian (C.01) program highlighted that the electrostatic potential behavior of the thymine molecule facilitated a non-covalent interaction toward gold for the selective detection of analytes, and the computation was also used to calculate a UV-Vis absorption band as well. The calculated absorption band of the AuNPs with thymine, obtained using TD-DFT, was found to be very close to the experimental data. The omnicapped truncated tetrahedral ( -tetrahedral) Au cluster structure was considered as the model for the AuNP optimization. The linear range obtained for the quantitative determination of thymine was found to be 10-1200 ng mL with a limit of detection of 3 ng mL. The advantages of using the AuNPs as a biochemical sensor are that they provide a facile and low cost method and are selective for the qualitative and quantitative determination of thymine in a DNA standard and in urine samples in comparison to chromatographic and electrochemical methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082146 | PMC |
http://dx.doi.org/10.1039/c8ra02627k | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.
A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Voxel-based morphometry (VBM) of T1-weighted (T1-w) magnetic resonance imaging (MRI) is primarily used to study the association of brain structure with cognitive functions. However, in theory, T2-weighted (T2-w) MRI could also be used in VBM studies because of its sensitivity to pathology and tissue changes. We aimed to compare the T1-w and T2-w images to study brain structures in association with cognitive abilities.
View Article and Find Full Text PDFRadiol Imaging Cancer
January 2025
From the Department of Radiology (A.C., A.N.Y., R.E., C.H., G.L., M.M., E.B.J., A.L.C., B.G., G.S.K., A.O.), Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy (A.C., A.N.Y., M.M., A.L.C., B.G.), Department of Surgery, Section of Urology (G.G., L.F.R., P.K.M., S.E.), Department of Pathology (T.A.), and Department of Public Health Sciences (M.G.), University of Chicago, 5841 S Maryland Ave, MC 2026, Chicago, IL 60637.
Purpose To evaluate the use of an automated hybrid multidimensional MRI (HM-MRI)-based tool to prospectively identify prostate cancer targets before MRI/US fusion biopsy in comparison with Prostate Imaging and Reporting Data System (PI-RADS)-based multiparametric MRI (mpMRI) evaluation by expert radiologists. Materials and Methods In this prospective clinical trial (ClinicalTrials.gov registration no.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!