We studied the surface structure and hydration structure of a bioinert mix-charged self-assembled monolayer (MC-SAM) comprised of sulfonic acid (SA)- and trimethylamine (TMA)-terminated thiols in liquid by frequency modulation atomic force microscopy (FM-AFM) at a molecular-scale. The TMA end groups showed a highly-ordered rectangular arrangement on a gold substrate in phosphate buffer saline (PBS). Highly structured water was observed at the interface of the MC-SAM and PBS, whereas a less structured hydration structure was observed on bioactive SAMs such as those with OH- and COO- terminal groups. Differences in surface and interface structures between the bioactive and bioinert SAMs suggest that the highly structured water at the bipolar MC-SAM surface works as a physical barrier to prevent adsorption or adhesion of protein and cells. Our results led to the idea that the hydration structure is an important factor in the determination of interactions between SAMs and biomolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082155PMC
http://dx.doi.org/10.1039/c8ra03569eDOI Listing

Publication Analysis

Top Keywords

hydration structure
12
frequency modulation
8
modulation atomic
8
atomic force
8
force microscopy
8
highly structured
8
structured water
8
molecular-scale structures
4
surface
4
structures surface
4

Similar Publications

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Mechanical Strength and Mechanism Analysis of Silt Soil Cured by Straw Ash-Calcium Carbide Slag.

Materials (Basel)

January 2025

Heilongjiang Provincial Key Laboratory of Road Structure and Green Ecological Technology, Northeast Forestry University, Harbin 150090, China.

Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag are proposed as effective curing agents for silt soil.

View Article and Find Full Text PDF

Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).

View Article and Find Full Text PDF

Soil stabilization technology has been applied for a long time in the infrastructure construction field. Currently, the use of waste materials as stabilizer is growing in attention, because it promises to develop green and high-performance soil stabilization efficiency. In this work, three common waste materials, including rice husk ash (RHA), steel slag (SS) and iron tailing (IT) powder, were selected and synergistically utilized with cement to prepare stabilized soil.

View Article and Find Full Text PDF

Strength Tests and Mechanism of Composite Stabilized Lightweight Soil Using Dredged Sludge.

Materials (Basel)

January 2025

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.

To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!